Toggle light / dark theme

Mapping cells in the ‘immortal’ regenerating hydra

face_with_colon_three


The tiny hydra, a freshwater invertebrate related to jellyfish and corals, has an amazing ability to renew its cells and regenerate damaged tissue. Cut a hydra in half, and it will regenerate its body and nervous system in a couple of days. Researchers at the University of California, Davis have now traced the fate of hydra’s cells, revealing how three lines of stem cells become nerves, muscles or other tissues.

Celina Juliano, assistant professor in the UC Davis Department of Molecular and Cellular Biology, project scientist Stefan Siebert and colleagues including Jeff Farrell, a postdoctoral researcher at Harvard University, sequenced the RNA transcripts of 25,000 single hydra cells to follow the genetic trajectory of nearly all differentiated cell types.

“The beauty of single-cell sequencing and why this is such a big deal for developmental biologists is that we can actually capture the genes that are expressed as cells differentiate from stem cells into their different cell types,” Juliano said.

DNA Test Startup Claims It Can Spot Embryos With Low Intelligence

Questionable startups are claiming to be able to determine how smart a frozen IVF embryo will become if carried to term, and parents are taking the bait.

Genomic Prediction, the most prominent of these companies, offers tests to scan embryos for genetic diseases and other conditions — as well as genetic indicators that a future child will be in the bottom two percent of intelligence.

And MIT Technology Review reports that Genomic Prediction co-founder Stephen Hsu often uses media appearances to discuss future plans for a general intelligence test — something that, with current tech, is extremely unlikely to actually work.

Modified CRISPR gene editing tool could improve therapies for HIV, sickle cell disease

City of Hope researchers may have found a way to sharpen the fastest, cheapest and most accurate gene editing technique, CRISPR-Cas9, so that it can more successfully cut out undesirable genetic information.

This improved cutting ability could one day fast-track potential therapies for HIV, and, potentially, other immune conditions.

“Our CRISPR-Cas9 design may be the difference between trying to cut a ribeye steak with a butter knife versus slicing it with a steak knife,” said Tristan Scott, Ph.D., lead author of the study and a staff research scientist at City of Hope’s Center for Gene Therapy. “Other scientists have tried to improve CRISPR cutting through chemical modifications, but that’s an expensive process and is like diamond-coating a blade. Instead, we have designed a better pair of scissors you can buy at any convenience store.”

How Gene Therapy Is Evolving to Tackle Complex Diseases

Gene therapy has traditionally been applied to well-understood diseases where a single genetic mutation was to blame. A new generation of technology is expanding the potential of gene therapy to treat conditions that were previously unreachable. Since the first gene therapy clinical trials in the 1990s, the technology has made its way into the market for conditions ranging from blindness to cancer. Gene therapy has the potential to fix any genetic mutation causing disease by inserting a new copy of the faulty gene. However, its reach has historically been limited. We’ve been constrained with the things we.

Dr. David Sinclair on Informational Theory of Aging, Nicotinamide Mononucleotide, Resveratrol & More

David A. Sinclair, PhD, is a professor in the Department of Genetics at Harvard Medical School and co-director of the Paul F. Glenn Center for the Biological Mechanisms of Aging.
Dr. Sinclair’s work focuses on understanding the mechanisms that drive human aging and identifying ways to slow or reverse aging’s effects. In particular, he has examined the role of sirtuins in disease and aging, with special emphasis on how sirtuin activity is modulated by compounds produced by the body as well as those consumed in the diet, such as resveratrol. His work has implications for human metabolism, mitochondrial and neurological health, and cancer.

▶︎ Get the episode’s show notes, timeline, and transcript.
https://www.foundmyfitness.com/episodes/david-sinclair

▶︎ Detailed overview of NAD+
https://www.foundmyfitness.com/topics/nad

▶︎ Detailed overview of nicotinamide riboside
https://www.foundmyfitness.com/topics/nicotinamide-riboside

▶︎ Detailed topic page on nicotinamide mononucleotide
https://www.foundmyfitness.com/topics/nicotinamide-mononucleotide

▶︎ Follow Dr. David Sinclair on Twitter

First use of CRISPR against cancer in patients clears safety hurdles

The first attempt in the United States to use a gene editing tool called CRISPR against cancer seems safe in the three patients who have had it so far, but it’s too soon to know if it will improve survival, doctors reported Wednesday.

The doctors were able to take immune system cells from the patients’ blood and alter them genetically to help them recognize and fight cancer, with minimal and manageable side effects. The treatment deletes three genes that might have been hindering these cells’ ability to attack the disease, and adds a new, fourth feature to help them do the job.

“It’s the most complicated genetic, cellular engineering that’s been attempted so far,” said the study leader, Dr. Edward Stadtmauer of the University of Pennsylvania in Philadelphia. “This is proof that we can safely do gene editing of these cells.”

All children to receive whole genome sequencing at birth, under ambitions laid out

All children will be able to receive whole genome sequencing at birth, under ambitions laid out by the Health Secretary.

Matt Hancock said that in future, the tests would be routinely offered, alongside standard checks on newborns, in order to map out the risk of genetic diseases, and offer “predictive, personalised” care.

Ministers have already promised that such tests will be offered to all children diagnosed with cancer by the end of this year.

/* */