Toggle light / dark theme

Imagine a future where a guided biomachine put into your body seeks out defective gene sequences in each cell and edits in the correct information with precision accuracy.

It’s called gene editing, and University of Alberta researchers have just published a game-changing study that promises to bring the technology much closer to therapeutic reality.

“We’ve discovered a way to greatly improve the accuracy of gene-editing technology by replacing the natural guide molecule it uses with a synthetic one called a bridged nucleic acid, or BNA,” said Basil Hubbard, Canada Research Chair in Molecular Therapeutics and an assistant professor in the U of A’s Department of Pharmacology, who led the study.

Read more

When the gene-editing technology CRISPR first made a splash back in 2012, it foretold a future in which curing diseases might simply involve snipping out problematic bits of genetic code. Of course, innovation is rarely so straightforward. As incredible as CRISPR is, it also has some pretty sizable flaws to overcome before it can live up to its hype as a veritable cure-all for human disease.

A new study published this week in the journal Nature Genetics tackles one CRISPR complication. CRISPR gene-editing systems can easily cut many pieces of DNA at once, but actually editing all those genes is a lot more time-consuming. Now, scientists at UCLA have come up with a way to edit multiple genes at once.

When scientists use CRISPR for genetic engineering, they are really using a system made up of several parts. CRISPR is a tool taken from bacterial immune systems. When a virus invades, the bacterial immune system sends an enzyme like Cas9 to the virus and chops it up. The bacteria then adds short bits of virus DNA to its own code, so it can recognize that virus quickly in the future. If the virus shows up again, a guide RNA will lead the Cas9 enzyme to the matching place in the virus code, where it again chops it up. In CRISPR, when that cutting is done, scientists can also insert a new bit of code or delete code, to, for example, fix disease-causing genetic mutations in the code before patching it up. But delivering that new code and making the patch is where it can get especially tricky.

Read more

Take any two cells from your body and there’s a good chance their genetic sequences will be a match. That is, unless you happen to have what’s referred to in the medical literature as a ‘tetragametic chimerism’ – a condition that causes separate fertilised embryos to merge into a single body.

Once thought to be rare among humans, there’s good reason to suspect we might be seeing a lot more of it in the future.

The truth is, nobody is really certain how many humans have cells in their body that once belonged to a sibling.

Read more

Kazan, Russia, April 23–25.


23–25 April 2018 in Kazan (Russia) will be a biogerontological conference with the following main topics:

- Epigenetic mechanisms of aging

- Genomics, metabolomics, proteomics of longevity in humans and animals.

- Environment and aging

- Biomarkers of biological age

- Pharmacological interventions in aging.

- Mechanisms of regeneration.

Read more

A 10-year-long study called the PanCancer Atlas is releasing a trove of genetic data in an effort to help doctors treat a wide variety of cancers more precisely.

The history: Over the past decade, 150 researchers from the US and around the world painstakingly analyzed DNA, RNA, and proteins from tumor samples of more than 11,000 patients with 33 different types of cancer.

The findings: From that data, scientists have identified about 300 genes that drive tumor growth. They also found that just over half the tumors samples analyzed carry genetic mutations that could be targeted by therapies that are already on the market. These findings and others appear in 29 different papers today in the journal Cell.

Read more

Protein synthesis is a critical part of how our cells operate and keep us alive and when it goes wrong it drives the aging process. We take a look at how it works and what happens when things break down.


Suppose that your full-time job is to proofread machine-translated texts. The translation algorithm commits mistakes at a constant rate all day long; from this point of view, the quality of the translation stays the same. However, as a poor human proofreader, your ability to focus on this task will likely decline throughout the day; therefore, the number of missed errors, and therefore the number of translations that go out with mistakes, will likely go up with time, even though the machine doesn’t make any more errors at dusk than it did at dawn.

To an extent, this is pretty much what is going on with protein synthesis in your body.

Protein synthesis in a nutshell

The so-called coding regions of your DNA consist of genes that encode the necessary information to assemble the proteins that your cells use. As your DNA is, for all intents and purposes, the blueprint to build you, it is pretty important information, and as such, you want to keep it safe. That’s why DNA is contained in the double-layered membrane of the cell nucleus, where it is relatively safe from oxidative stress and other factors that might damage it. The protein-assembling machinery of the cell, ribosomes, are located outside the cell nucleus, and when a cell needs to build new proteins, what’s sent out to the assembly lines is not the blueprint itself, but rather a disposable mRNA (messenger RNA) copy of it that is read by the ribosomes, which will then build the corresponding protein. The process of making an mRNA copy of DNA is called “translation”, and as the initial analogy suggests, it is not error-free.

Read more

The initiative, which launched on March 20, will start by providing 100,000 of its 1.3 million residents with information on their genetic risk for certain diseases. Genetic information from the project will first be delivered to a family doctor, so that patients will receive counseling about what their results actually mean and how they can better adapt their lifestyle to avoid illness.


The nation of Estonia is establishing a program that provides both free genetic testing and health advice to all citizens based on their results.

Read more