Toggle light / dark theme

Even in this “age of the genome,” much about genes remains shrouded in mystery. This is especially true for “cryptic mutations”—mutated genes that are hidden, and have unexpected effects on traits that are only revealed when combined with other mutations. Learning from one infamous cryptic mutation in particular, researchers from CSHL share important lessons for breeding or gene editing in crops.

This story starts with the Campbell Soup Company and a field of tomatoes in the mid 20th century. One particular tomato plant had an unexpected beneficial trait: the fruits separated from the vine right where the green cap and stem touch the rest of the fruit. It turned out that this spontaneous natural mutant was ideal for large-scale production.

Other tomato varieties would break away at a joint-like nub in their fruit stems, leaving the pointed green caps on the fruits. With stems still present, these capped tomatoes would get easily bruised in the machine-picking process or end up puncturing one another in transit. However, the lucky Campbell Soup mutant didn’t have these problems. It was jointless, and perfect for a growing, automated industry. Unsurprisingly, breeders called the that drives this beneficial trait jointless-2 (j2).

Read more

#Interesting #opinion This was brought up a decade ago, yet he was never asked to alter his genetics to make it fair for others. Is the current case one of discrimination? The recent work on the Chinese CRISPER babies showed that it augmented their ability. Will CRISPER babies also have in the future to “Change Their Genetics” to compete in sports if deemed unfair advantage?

Read more

It turns out the capacity for offspring to benefit from their parents’ experiences doesn’t just happen with fish. Munday tells me about Daphnia, often called water fleas, that are found in freshwater lakes, ponds, and puddles. The tiny crustacean can hatch with either a round head or a pointed head. If it shares the water with predators such as fish or midges or other insects, spikes and spines help lessen the likelihood of being eaten. For many species of juvenile water flea…


Insights into epigenetics and inheritance show that some organisms can adapt to a changing world.

Read more

David Sinclair is a Professor in the Department of Genetics at Harvard Medical School and co-Director of the Paul Glenn Centre for the Biological Mechanisms of Ageing.

Today we hear from a scientist at the cutting edge of longevity research as Professor Sinclair gives us a fascinating insight into the world of anti-ageing.

Expect to learn how and why we age, why stabilising the epigenetic landscape may enable a human to live for 1000 years, exactly what tactics Professor Sinclair is using himself to try and extend his life and how fasting, Sirtuins and NAD can be used to promote health and reduce diseases.

Extra Stuff:
David’s New Book — http://lifespanbook.com/
Follow David on Twitter — https://twitter.com/davidasinclair
Inside Tracker — https:// www.insidetracker.com
Recommended Books — https://www.amazon.co.uk/shop/chriswillx

Listen to all episodes online. Search “Modern Wisdom” on any Podcast App or click here:
iTunes: https://apple.co/2MNqIgw
Spotify: https://spoti.fi/2LSimPn
Stitcher: https://www.stitcher.com/podcast/modern-wisdom

I want to hear from you!! Get in touch in the comments below or head to…

The lionfish is an invasive species that is currently wreaking havoc in the warm waters of the Bahamas, the Caribbean, and the US southwestern Atlantic and Gulf of Mexico coasts. But where did they come from and what makes this normally docile hunter suddenly turn vicious in its new home? To answer these questions, North Carolina State University initiated a study of lionfish genetics to learn more about their origins and how to control them.

Read more

Without ensuring high levels of accuracy, any proposed CRISPR gene therapy becomes a genetic crapshoot.

Now, a team from Duke University may have found a universal workaround—a trick to fundamentally boost CRISPR’s accuracy in almost all its forms. Published this month in Nature Biotechnology, the team’s study tweaked the design of guide RNAs, the indispensable targeting “blood hound” of the CRISPR duo that hunts down specific DNA sequences before its partner Cas makes the cut.

The upgrade is deceptively simple: tag a “locking” structure to one end of the guide RNA so that only the targeted DNA can unleash the power of the Cas scissors. Yet exactly because the tweak is so easy, guide RNA 2.0 can fundamentally tune the accuracy of multiple CRISPR systems—not just those relying on the classic Cas9, but also newer diagnostic systems that deploy Cas12a and other flavors—by as much as 200-fold.

Read more