Toggle light / dark theme

Primary Prevention Trial

While the trial is limited to members of families with genetic mutations that all but guarantee they will develop Alzheimer’s at a young age, typically in their 30s, 40s or 50s, the researchers expect that the study’s results will inform prevention and treatment efforts for all forms of Alzheimer’s disease.

Called the Primary Prevention Trial, the new study investigates whether remternetug — an investigational antibody being developed by Eli Lilly and Company — can remove plaques of a key Alzheimer’s protein called amyloid beta from the brain or block them from accumulating in the first place. Both genetic and nongenetic forms of Alzheimer’s disease start with amyloid slowly collecting in the brain two decades before memory and thinking problems arise. By clearing out low levels of amyloid beta plaques or preventing them from accumulating during the early, asymptomatic phase of the disease, or both, the researchers hope to interrupt the disease process at the earliest stage and spare people from ever developing symptoms.

“We have seen tremendous progress in the treatment of Alzheimer disease in the past few years,” said Eric McDade, DO, a professor of neurology and the trial’s principal investigator. “Two amyloid-targeting drugs were shown to slow symptoms of the disease and have now been approved by the Food and Drug Administration (FDA) as treatments for people with mild cognitive impairment or mild dementia due to Alzheimer’s disease. This provides strong support for our hypothesis that intervening when amyloid beta plaques are at the very earliest stage, long before symptoms arise, could prevent symptoms from emerging in the first place.”

The trial is part of the Knight Family Dominantly Inherited Alzheimer Network-Trials Unit (Knight Family DIAN-TU), a clinical trials platform designed to find medicines to prevent or treat Alzheimer’s disease. It is closely associated with DIAN, a National Institutes of Health (NIH)-funded international research network led by WashU Medicine that involves research institutes in North America, Australia, Europe, Asia and South America. DIAN follows families with mutations in any of three genes that cause Alzheimer’s at a young age. A child born into such a family has a 50% chance of inheriting such a mutation, and those who do so typically develop signs of dementia near the same age his or her parent did. All the participants in the Primary Prevention Trial come from such families.

“My grandfather passed away from Alzheimer’s, and so did his mother and all but one of his brothers,” said Hannah Richardson, 24, a participant in the Primary Prevention Trial. “My mom and my uncle have been participating in DIAN trials since I was about 10 years old. My mom was always very open about her diagnosis and how it spurred her advocacy for Alzheimer’s research, and I’ve always known I wanted to follow in her footsteps. I am happy to be involved in the Primary Prevention Trial and be involved in research because I know how important it is.”


Yale Scientists Just Cracked the DNA Code That Built the Human Brain

Scientists explored Human Accelerated Regions (HARs), genetic regulators that tweak existing genes rather than introducing new ones. Using cutting-edge techniques, they mapped nearly all HAR interactions, revealing their role in brain development and neurological disorders like autism and schizophrenia.

Decoding the Genetic Evolution of the Human Brain

A new Yale study offers a deeper understanding of the genetic changes that shaped human brain evolution and how this process differed from that of chimpanzees.

Robot acrobatics: Mammal tails offer surprising design insights

Evolution is traditionally associated with a process of increasing complexity and gaining new genes. However, the explosion of the genomic era shows that gene loss and simplification is a much more frequent process in the evolution of species than previously thought, and may favor new biological adaptations that facilitate the survival of living organisms.

This evolutionary driver, which seems counter-intuitive—” less is more” in genetic terms—now reveals a surprising dimension that responds to the new evolutionary concept of “less, but more,” i.e., the phenomenon of massive gene losses followed by large expansions through gene duplications.

This is one of the main conclusions of an article published in the journal Molecular Biology and Evolution, led by a team from the Genetics Section of the Faculty of Biology and the Institute for Research on Biodiversity (IRBio) of the University of Barcelona, in which teams from the Okinawa Institute of Science and Technology (OIST) have also participated.

A New Approach Solves Hundreds of Patient Mysteries

Scientists have provided a diagnosis for more than 500 European patients who did not know their condition. This work, which was performed by the Solving the Unsolved Rare Diseases (Solve-RD) consortium and was highly collaborative, has been reported in Nature Medicine.

In the European Union, a rare disorder is defined as one that occurs in fewer than five of 10,000 people. Genetic mutations are the cause of most of these rare disorders, but genetic sequencing cannot always provide an easy answer.

New Blood Test Can Diagnose Multiple Cancers, Even at Early Stages

When cancer is detected earlier, it can improve outcomes for patients. Liquid biopsies are one way to improve cancer detection; these tests can analyze DNA in blood samples, which can reveal the presence of tumors because of circulating tumor DNA (ctDNA). Usually, genetic sequencing is used to assess this DNA, but that usually only identifies some types of cancers. Scientists have now created a new blood test called TriOx, which can analyze ctDNA in multiple ways and detect six types of cancer. The work has been reported in Nature Communications.

Usually, the analysis of ctDNA only focuses on one feature of the genome such as small variations in the DNA sequence that can reveal cancer, but TriOx uses an advanced tool called whole-genome TAPS (TET-Assisted Pyridine Borane Sequencing), which was combined with machine learning. This technique can analyze genetic as well as epigenetic features of DNA, like methylation.

The Aged Microbiome Drives Inflammation, And Inflammation Drives Microbiome Dysbiosis

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Several Psychiatric Disorders Share The Same Root Cause, Study Reveals

Researchers recently discovered that eight different psychiatric conditions share a common genetic basis.

A new study has now honed in on some of those shared genetic variants to understand their properties. They found many are active for longer during brain development and potentially impact multiple stages, suggesting they could be new targets to treat multiple conditions.

“The proteins produced by these genes are also highly connected to other proteins,” explains University of North Carolina geneticist Hyejung Won. “Changes to these proteins in particular could ripple through the network, potentially causing widespread effects on the brain.”