Toggle light / dark theme

Fat transport deficiency explains rare childhood metabolic crises

Researchers studying a protein linked to a rare, severe disease have made a discovery that sheds light on how cells meet their energy needs during a severe metabolic crisis. The findings could lead to new treatments for the disease and open new avenues of research for other conditions involving impaired fat metabolism.

When scientists at the Centre for Genomic Regulation (CRG) in Barcelona first identified a handful of protein-coding genes called TANGO in 2006, they had no idea that one of them, TANGO2, would eventually be linked to a life-threatening disorder in children. In 2016, the researchers found that mutations in TANGO2 cause a now officially recognized as TANGO2 Deficiency Disorder (TDD).

There are about 110 known patients with TDD worldwide, though there are thought to be an estimated six to nine thousand undiagnosed patients in total.

Gene therapy developed for maple syrup urine disease shows promise

A study led by UMass Chan Medical School researchers has demonstrated that a gene therapy to correct a mutation that causes maple syrup urine disease (MSUD) prevented newborn death, normalized growth, restored coordinated expression of the affected genes and stabilized biomarkers in a calf as well as in mice.

“Simply put, we believe the demonstrated in both animal species, especially in the cow, very well showcases the therapeutic potential for MSUD, in part because the diseased cow, without treatment, has a very similar metabolic profile as the patients,” said Dan Wang, Ph.D., assistant professor of genetic & cellular medicine.

Dr. Wang is co-principal investigator with Heather Gray-Edwards, DVM, Ph.D., assistant professor of genetic & cellular medicine; Guangping Gao, Ph.D., the Penelope Booth Rockwell Chair in Biomedical Research, director of the Horae Gene Therapy Center, director of the Li Weibo Institute for Rare Diseases Research and chair and professor of genetic & cellular medicine; and Kevin Strauss, MD, adjunct professor of pediatrics and head of therapeutic development at the Clinic for Special Children in Gordonville, Pennsylvania.

Some People Are Immune to a Deadly Disease — Scientists Finally Know Why

A rare genetic disease that ravages some but spares others has baffled researchers — until now.

Researchers found that a genetic variant, HAQ-STING, acts as a shield against COPA Syndrome, a discovery that could lead to life-changing gene therapies. For families long plagued by the disease, the revelation was both an explanation and a beacon of hope.

A breakthrough in understanding COPA syndrome.

The Biggest AI for Biology Yet Writes Genomes From Scratch

A new algorithm, Evo 2, trained on roughly 128,000 genomes—9.3 trillion DNA letter pairs—spanning all of life’s domains, is now the largest generative AI model for biology to date. Built by scientists at the Arc Institute, Stanford University, and Nvidia, Evo 2 can write whole chromosomes and small genomes from scratch.

It also learned how DNA mutations affect proteins, RNA, and overall health, shining light on “non-coding” regions, in particular. These mysterious sections of DNA don’t make proteins but often control gene activity and are linked to diseases.

The team has released Evo 2’s software code and model parameters to the scientific community for further exploration. Researchers can also access the tool through a user-friendly web interface. With Evo 2 as a foundation, scientists may develop more specific AI models. These could predict how mutations affect a protein’s function, how genes operate differently across cell types, or even help researchers design new genomes for synthetic biology.

Scientists identify ‘inflammation’ gene that hastens aging

New therapies for managing aging could emerge from research into a new gene, which scientists have identified as a key driver of degeneration.

Age-related diseases are strongly linked to inflammation which, when chronic, albeit low-grade, contributes to conditions such as cardiovascular disease, diabetes, neurodegeneration, and sarcopenia, significantly impacting health and longevity.

In a study published in Nature Communications, Dr. Ildus Akhmetov, a geneticist at Liverpool John Moores University’s School of Sport and Exercise Sciences, along with colleagues from Italy, Switzerland, and the Netherlands, uncovered groundbreaking insights into the role of the Ectodysplasin A2 Receptor (EDA2R) in this process.

“Inflammation” Gene Linked to Faster Aging

New therapies for managing ageing could emerge from research into a new gene, which scientists have identified as a key driver of degeneration.

Age-related diseases are strongly linked to inflammation which when chronic, albeit low-grade, contributes to conditions such as cardiovascular disease, diabetes, neurodegeneration, and sarcopenia, significantly impacting health and longevity.

In a study published in Nature Communications, Dr Ildus Akhmetov, a geneticist at Liverpool John Moores University’s School of Sport and Exercise Sciences, along with colleagues from Italy, Switzerland, and the Netherlands, uncovered groundbreaking insights into the role of the Ectodysplasin A2 Receptor (EDA2R) in this process.

Rapidly Evolving DNA May Explain Human Brain Complexity

Summary: A new study reveals that human accelerated regions (HARs)—segments of DNA that evolved much faster than expected—may be key to the brain’s advanced cognitive abilities. Researchers compared human and chimpanzee neurons and found that HARs drive the growth of multiple neural projections, which enhance communication between brain cells.

When human HARs were introduced into chimp neurons, they also grew more projections, suggesting a direct link between HARs and neural complexity. However, these same genetic changes may also contribute to neurodevelopmental disorders like autism, highlighting the delicate balance of human brain evolution.

A Next-Generation Malaria Drug: New Epigenetic Inhibitor Kills the Deadliest Parasite

Epigenetic inhibitors: A promising new strategy for antimalarial treatment? A recent study discovers a gene regulation inhibitor that selectively eliminates the malaria parasite.

A multinational research team, led by Professor Markus Meißner from LMU Munich and Professor Gernot Längst from the University of Regensburg, has made significant discoveries about gene regulation in Plasmodium falciparum, the primary cause of malaria. Their findings, published in Nature, provide new avenues for developing advanced therapeutic strategies.

Malaria remains a major global health challenge. In 2022 alone, an estimated 247 million people were infected, with over 600,000 deaths, the majority occurring in sub-Saharan Africa. These statistics highlight the urgent need for innovative research to drive progress in malaria prevention and treatment.

Massively parallel reporter assay investigates shared genetic variants of eight psychiatric disorders

Researchers just found common genes linked to autism, ADHD, schizophrenia, bipolar disorder, major depressive disorder, Tourette syndrome, obsessive-compulsive disorder, and anorexia.

These disorders all share common genetic variants that influence brain development.

Researchers found that these genetic differences impact multiple stages of brain growth and are involved in complex protein interactions. This discovery could explain why many of these conditions often appear together in individuals and families, offering a fresh perspective on mental health connections.

By identifying 683 genetic variants that regulate brain development, scientists hope to pave the way for new treatments targeting these shared genetic factors. This research challenges traditional classifications of psychiatric disorders and suggests that a single therapy could potentially address multiple conditions. With nearly 1 billion people worldwide affected by mental health disorders, these findings mark a significant step toward more effective, genetically-informed treatments.


High-throughput experimental validation of genetic variants linked to eight psychiatric disorders reveals the regulatory mechanisms underlying variants with pleiotropic and disorder-specific effects.

Nanoparticles deliver microRNAs to muscle stem cells for potential muscular dystrophy treatment

In an international collaboration, researchers have made an important breakthrough in the therapeutic delivery of microRNAs against Duchenne muscular dystrophy, a disease with no cure, to date.

Duchenne is a characterized by the progressive loss of muscle mass, due to mutations in the dystrophin gene. Without the corresponding functional protein, muscles cannot function or repair themselves properly, resulting in the deterioration of skeletal, heart, and lung muscles. Because the dystrophin gene is located on the X chromosome, it mainly affects males, while females are usually carriers.

Researchers have developed a strategy to treat muscular dystrophy, which uses as vehicles to transport therapeutical microRNAs to muscle . Once inside the muscle stem cells, the nanoparticles release the microRNA to stimulate the production of muscle fibers.