Toggle light / dark theme

The Most Important Living Scientist — Dr. Michael Levin

Dr. Michael Levin’s groundbreaking research redefines intelligence, agency, and selfhood, showing that it exists not just in brains but across all levels of biological systems—cells, organs, and entire organisms. Through his concept of the “morphogenetic code,” Levin reveals that bioelectric signals, not just DNA, guide cellular organization and behavior, enabling profound regenerative breakthroughs like limb regrowth and functional organ creation. His work extends into philosophy, reshaping how we view alien life, selfhood, and even the nature of existence by framing life as an emergent property of interconnected intelligences. Levin envisions tools like an “anatomical compiler” to revolutionize medicine and challenges us to rethink life, intelligence, and the cosmos, solidifying his place as one of the most important living scientists.

Deep Thinkers, Check This: https://www.skool.com/yoda/about.

Biological Age, Age At Menopause, And Longevity (4 Studies)

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Scientists Just Discovered an RNA That Repairs DNA Damage — And It’s a Game-Changer

Genome Instability and Disease Risk

Every time a cell divides, its DNA is at risk of damage. To complete division, the cell must copy its entire genetic code — billions of letters long — which can lead to occasional errors. But cell division isn’t the only threat. Over time, exposure to factors like sunlight, alcohol, and cigarette smoke can also harm DNA, increasing the risk of cancer and other diseases.

Fortunately, cells have built-in repair systems to counteract this damage. This process, known as the DNA damage response (DDR), activates specific signaling pathways that detect and fix errors. These mechanisms help maintain genetic stability and ensure the cell’s survival.

Scientists Discover How Engineered Bacteria Supercharge the Immune System to Kill Cancer

For decades, scientists have explored the potential of bacteria in fighting cancer, but safety and efficacy barriers have stood in the way. Now, a research team has cracked the code behind how genetically engineered bacteria, specifically DB1, can selectively target and eliminate tumors. A team of.

Woolly mouse could have Colossal impact on human longevity

“Our woolly mouse project drove innovations in areas combining the end to end process from our computational biology analysis tools to our multiplex precision genome engineering technologies,” Lamm told us. “These technologies enable precise and efficient genetic modifications at multiple sites within the genome at the same time, which could help with research focused on addressing the complex multi-genetic age-related diseases in the future.”

By further refining the genetic engineering techniques developed by Colossal, researchers may eventually develop therapies tailored to an individual’s genetic makeup, mitigating the effects of aging at a cellular level.

“Many diseases are multigenic in nature and require deep analysis computationally and being able to edit the genome at multiple sites with high degrees of efficiency to not cause off-target effects,” Lamm told us. “Our end to end process and the further development of our multiplex editing and DNA synthesis capabilities will lead to others being able to use our tools and system to treat these more complicated diseases. Together, these innovations are part of the science focused on developing personalized, targeted therapies to mitigate the effects of aging, accelerate the development of regenerative medicine, and extend both lifespan and healthspan.”

AAV Gene Therapy for Maple Syrup Urine Disease Shows Promise

Maple syrup urine disease (MSUD) is a rare genetic inborn error of metabolism characterized by recurrent life-threatening neurologic crises and progressive brain injury. The disease is typically caused by biallelic mutations in genes (branched-chain α-ketoacid dehydrogenase E1α (BCKDHA), E1β (BCKDHB), or dihydrolipoamide branched-chain transacylase (DBT)) subunits which interact to form the mitochondrial BCKDH complex that decarboxylates ketoacid derivatives of leucine, isoleucine, and valine. MSUD can be treated by a strictly controlled diet or allogeneic liver transplantation.

Now, new work demonstrates that a gene therapy prevented newborn death, normalized growth, restored coordinated expression of the affected genes, and stabilized biomarkers in a calf as well as in mice.

This work is published in Science Translational Medicine in the paper, “BCKDHA-BCKDHB digenic gene therapy restores metabolic homeostasis in two mouse models and a calf with classic maple syrup urine disease.

Scientists aiming to bring back woolly mammoth create woolly mice

A plan to revive the mammoth is on track, scientists have said after creating a new species: the woolly mouse.

Scientists at the US biotechnology company Colossal Biosciences plan to “de-extinct” the prehistoric pachyderms by genetically modifying Asian elephants to give them woolly mammoth traits. They hope the first calf will be born by the end of 2028.

Aging Brains Have a Sugar Problem — And Stanford Scientists May Have Found a Fix

Aging depletes the brain’s protective sugar shield, weakening defenses and fueling cognitive decline, but restoring key sugars may reverse these effects.

What if a critical piece of the puzzle of brain aging has been hiding in plain sight? While neuroscience has traditionally focused on proteins and DNA

DNA, or deoxyribonucleic acid, is a molecule composed of two long strands of nucleotides that coil around each other to form a double helix. It is the hereditary material in humans and almost all other organisms that carries genetic instructions for development, functioning, growth, and reproduction. Nearly every cell in a person’s body has the same DNA. Most DNA is located in the cell nucleus (where it is called nuclear DNA), but a small amount of DNA can also be found in the mitochondria (where it is called mitochondrial DNA or mtDNA).

Introducing Evo 2, a predictive and generative genomic AI for all domains of life

Researchers at the Arc Institute, Stanford University, and NVIDIA have developed Evo 2, an advanced AI model capable of predicting genetic variations and generating genomic sequences across all domains of life.

Testing shows that Evo 2 accurately predicts the functional effects of mutations across prokaryotic and eukaryotic genomes. It also successfully annotated the woolly mammoth genome from raw without a direct training reference, showing an ability to generalize function from the sequence alone.

Current genomic models struggle with predicting functional impacts of mutations across diverse biological systems, particularly for eukaryotic genomes. Machine learning approaches have demonstrated some success in modeling and prokaryotic genomes. The complexity of eukaryotic DNA, with its long-range interactions and regulatory elements, presents more of a challenge.

How AI Is Transforming The Pharmaceutical Industry

AI-powered precision in medicine is helping to enhance the accuracy, efficiency, and personalization of medical treatments and healthcare interventions. Machine learning models analyze vast datasets, including genetic information, disease pathways, and past clinical outcomes, to predict how drugs will interact with biological targets. This not only speeds up the identification of promising compounds but also helps eliminate ineffective or potentially harmful options early in the research process.

Researchers are also turning to AI to improve how they evaluate a drug’s effectiveness across diverse patient populations. By analyzing real-world data, including electronic health records and biomarker responses, AI can help researchers identify patterns that predict how different groups may respond to a treatment. This level of precision helps refine dosing strategies, minimize side effects, and support the development of personalized medicine where treatments are tailored to an individual’s genetic and biological profile.

AI is having a positive impact on the pharmaceutical industry helping to reshape how drugs are discovered, tested, and brought to market. From accelerating drug development and optimizing research to enhancing clinical trials and manufacturing, AI is reducing costs, improving efficiency, and ultimately delivering better treatments to patients.