Menu

Blog

Archive for the ‘genetics’ category: Page 320

Apr 17, 2020

Robots with insect brains

Posted by in categories: genetics, habitats, neuroscience, robotics/AI

It is an engineer’s dream to build a robot as competent as an insect at locomotion, directed action, navigation, and survival in complex conditions. But as well as studying insects to improve robotics, in parallel, robot implementations have played a useful role in evaluating mechanistic explanations of insect behavior, testing hypotheses by embedding them in real-world machines. The wealth and depth of data coming from insect neuroscience hold the tantalizing possibility of building complete insect brain models. Robotics has a role to play in maintaining a focus on functional understanding—what do the neural circuits need to compute to support successful behavior?

Insect brains have been described as “minute structures controlling complex behaviors” (1): Compare the number of neurons in the fruit fly brain (∼135,000) to that in the mouse (70 million) or human (86 billion). Insect brain structures and circuits evolved independently to solve many of the same problems faced by vertebrate brains (or a robot’s control program). Despite the vast range of insect body types, behaviors, habitats, and lifestyles, there are many surprising consistencies across species in brain organization, suggesting that these might be effective, efficient, and general-purpose solutions.

Unraveling these circuits combines many disciplines, including painstaking neuroanatomical and neurophysiological analysis of the components and their connectivity. An important recent advance is the development of neurogenetic methods that provide precise control over the activity of individual neurons in freely behaving animals. However, the ultimate test of mechanistic understanding is the ability to build a machine that replicates the function. Computer models let researchers copy the brain’s processes, and robots allow these models to be tested in real bodies interacting with real environments (2). The following examples illustrate how this approach is being used to explore increasingly sophisticated control problems, including predictive tracking, body coordination, navigation, and learning.

Apr 16, 2020

Autism in males linked to defect in brain immune cells, microglia

Posted by in categories: genetics, neuroscience

Autism disproportionately affects boys. A new study offers a potential mechanism. Brain cells called microglia prune synaptic connections during early development. A specific genetic mutation affecting males led to enlarged microglia that had trouble performing that job.

Apr 16, 2020

Can We Opt Out of Aging? | Greg Fahy | TEDxResedaBlvd

Posted by in categories: biotech/medical, genetics, life extension

NOTE FROM TED: Please do not look to this talk for medical advice. This talk only represents the speaker’s personal views and understanding of aging which remains an emerging field of study. We’ve flagged this talk because it falls outside the content guidelines TED gives TEDx organizers. TEDx events are independently organized by volunteers. The guidelines we give TEDx organizers are described in more detail here: http://storage.ted.com/tedx/manuals/tedx_content_guidelines.pdf

Could we reverse epigenetic aging by re-growing the thymus? In the future, will it be possible to extend our lives or increase our longevity? Dr. Greg Fahy is a low-temperature biologist and investigator of aging intervention in humans. His first clinical trial, intended to reverse immune system aging, provided evidence that aging could be reversed in humans. Dr. Greg Fahy is a low-temperature biologist and investigator of aging intervention in humans. His first clinical trial, intended to reverse immune system aging, provided the first evidence that global aging can be reversed in humans. This talk was given at a TEDx event using the TED conference format but independently organized by a local community.

Apr 15, 2020

We can identify ‘bad’ genes. Why can’t we use CRISPR gene editing to get rid of them?

Posted by in categories: bioengineering, biotech/medical, genetics

A desirable option would be to use CRISPR gene editing to essentially cut out the unwanted gene. There are, however, many challenges ahead.


If you want to remove an undesirable gene from a population, you have a couple theoretical options — one that most people might find unthinkable, and one that lies outside our current scientific abilities.

Continue reading “We can identify ‘bad’ genes. Why can’t we use CRISPR gene editing to get rid of them?” »

Apr 14, 2020

Gene editing rids mice of DNA segment linked to autism

Posted by in categories: bioengineering, biotech/medical, genetics, neuroscience

Researchers have used the gene-editing technique CRISPR to delete a segment of DNA associated with autism and schizophrenia from mouse brain cells.

The technique has only proven effective in mice so far but may eventually be suitable for treating brain conditions in people, says Xiao-hong Lu, assistant professor of pharmacology and neuroscience at Louisiana State University Health in Shreveport.

Unlike techniques used to manipulate DNA in the mouse brain, CRISPR can be applied to people. He says, “We need a tool to help us to carry the genetic elements into the [human] brain.”

Apr 14, 2020

Geneticists zeroing in on genes affecting life span

Posted by in categories: biotech/medical, genetics, life extension

“We were very pleased to find out that even though life span is a very complicated trait caused by variation on a large number of loci, which is true for most complex traits, the number of loci that are in common is a totally finite number. So, we can imagine going on to the next stage and investigating one gene at a time and in combination,” Mackay said.


Scientists believe about 25 percent of the differences in human life span is determined by genetics—with the rest determined by environmental and lifestyle factors. But they don’t yet know all the genes that contribute to a long life.

A study published March 5, 2020, in PLOS Biology quantified variation in life span in the fruit fly genome, providing valuable insights for preserving health in elderly humans—an ever-increasing segment of the population. The paper titled “Context-dependent genetic architecture of Drosophila life span” is the culmination of a decade of research by Clemson University geneticists Trudy Mackay and Robert Anholt.

Continue reading “Geneticists zeroing in on genes affecting life span” »

Apr 14, 2020

CRISPR has success in treating mice with type 1 diabetes

Posted by in categories: bioengineering, biotech/medical, genetics

Circa 2017


Insulin-producing cells have been restored in mouse models of type 1 diabetes using a new genetic engineering technique.

American scientists adapted the gene editing technology known as CRISPR (clustered, regularly interspaced, short palindromic repeat) to successfully treat mouse models of type 1 diabetes, kidney disease and muscular dystrophy.

Continue reading “CRISPR has success in treating mice with type 1 diabetes” »

Apr 14, 2020

CRISPR-Cas9 successfully reverses type 2 diabetes in mice

Posted by in categories: biotech/medical, genetics

Circa 2019


Researchers at Hanyang University, South Korea, have used the gene-editing technology CRISPR-Cas9 to treat obesity and type 2 diabetes in mice, a development that could eventually benefit humans. The therapy specifically reduced fat tissue and reversed obesity-related metabolic disease in the animals.

Apr 14, 2020

What do soap bubbles and butterflies have in common?

Posted by in category: genetics

Edith Smith bred a bluer and shinier Common Buckeye at her butterfly farm in Florida, but it took University of California, Berkeley, graduate student Rachel Thayer to explain the physical and genetic changes underlying the butterfly’s newly acquired iridescence.

Apr 13, 2020

Regeneron Granted Fundamental Patents Covering Mouse Antibody Technology Used in VelocImmune® Mice

Posted by in categories: biotech/medical, genetics

Circa 2013

These patents form part of Regeneron’s global patent portfolio, which together protect fundamental inventions behind Regeneron’s VelocImmune humanized mice. The two patents listed above specifically contain claims covering genetically modified mice that have unrearranged human immunoglobulin variable region gene segments at endogenous mouse immunoglobulin loci. The VelocImmune mice contain the full repertoire of human heavy chain immunoglobulin genes and kappa light chain genes, each linked to endogenous mouse constant regions. As a result, VelocImmune mice generate a normal and robust immune response which many believe is becoming the gold standard for making human antibody therapeutics. VelocImmune is also proving to be one of the most valuable technologies in biotechnology history, in terms of the licensing and collaboration revenues it has helped generate.


TARRYTOWN, N.Y., Aug. 7, 2013 /PRNewswire/ — Regeneron Pharmaceuticals, Inc. (NASDAQ: REGN) today announced that the United States Patent and Trademark Office granted U.S. Patent No. 8,502,018 relating to methods of genetically modifying a mouse to make human antibodies. A similar European.