Toggle light / dark theme

‘Zombie Cells’ Are Still Alive but Can’t Function, and They Accumulate as We Age

Damage to the ends of your chromosomes can create “zombie cells” that are still alive but can’t function, according to our recently published study in Nature Structural and Molecular Biology.

When cells prepare to divide, their DNA is tightly wound around proteins to form chromosomes that provide structure and support for genetic material. At the ends of these chromosomes are repetitive stretches of DNA called telomeres that form a protective cap to prevent damage to the genetic material.

However, telomeres shorten each time a cell divides. This means that as cells divide more and more as you age, your telomeres become increasingly shorter and more likely to lose their ability to protect your DNA.

‘Jurassic Park’? Scientists want to resurrect Australia’s Tasmanian tiger

Is de-extinction realistic?

Scientists in the US and Australia have announced a multi-million dollar project — resurrecting the extinct Tasmanian tiger. The last known marsupial officially called a thylacine, died in the 1930s. According to the team, the extinct thylacine can be recreated using stem cells and gene-editing technology, and the first one could be “reintroduced” to the wild within 10 years.

We would strongly advocate that first and foremost we need to protect our biodiversity from further extinctions, but unfortunately we are not seeing a slowing down in species loss.


TIGGR Lab.

The last known marsupial officially called a thylacine, died in the 1930s. According to the team, the extinct thylacine can be recreated using stem cells and gene-editing technology, and the first one could be reintroduced to the wild within 10 years.

Dr. Katherine High, MD — Gene Therapy Pioneer — President, Therapeutics, Asklepios BioPharmaceutical

Gene therapy pioneer — dr. katherine high, MD — president, therapeutics, askbio.


Dr. Katherine High, MD, is President, Therapeutics, at Asklepios BioPharmaceutical (AskBio — https://www.askbio.com/), where she is also member of the AskBio Board of Directors, and has responsibility for driving the strategic direction and execution of pre-clinical and clinical programs of the company.

AskBio is a wholly owned and independently operated subsidiary of Bayer AG, set up as a fully integrated gene therapy company dedicated to developing life-saving medicines that cure genetic diseases.

Most recently, Dr. High was a Visiting Professor at Rockefeller University and previous to that, she served as President, Head of Research and Development, and a member of the Board of Directors at Spark Therapeutics (a subsidiary of Hoffmann-La Roche), where she directed the development and regulatory approval of Luxturna® (a gene therapy medication for the treatment of the ophthalmic condition Leber congenital amaurosis), and represents the first gene therapy for genetic disease to obtain regulatory approval in both the United States and Europe.

Dr. High was a longtime member of the faculty at the University of Pennsylvania and medical staff at The Children’s Hospital of Philadelphia, where she was also an Investigator of the Howard Hughes Medical Institute. She served a five-year term on the U.S. Food and Drug Administration Advisory Committee on Cell, Tissue and Gene Therapies and is a past president of the American Society of Gene & Cell Therapy.

Breakthrough study creates 3D genetic map of prostate cancer like never before

In a new study published in Nature, researchers have developed a breakthrough technique called spatial transcriptomics, which allows scientists to map tumors non-invasively and at an unprecedented resolution depth. For the first time, researchers have created a three-dimensional map of a whole prostate to an unprecedented resolution, including areas of healthy and cancerous cells. Surprisingly, the study revealed that individual prostate tumors contain a range of genetic variations, which until this point were unknown.

“We have never had this level of resolution available before, and this new approach revealed some surprising results,” said Alastair Lamb of Oxford’s Nuffield Department of Surgical Sciences, who jointly led the study.

Catch me if you can: How mRNA therapeutics are delivered into cells

In recent years, ribonucleic acid (RNA) has emerged as a powerful tool for the development of novel therapies. RNA is used to copy genetic information contained in our hereditary material, the deoxyribonucleic acid (DNA), and then serves as a template for building proteins, the building blocks of life. Delivery of RNA into cells remains a major challenge for the development of novel therapies across a broad range of diseases. Researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden together with researchers from the global biopharmaceutical company AstraZeneca have investigated where and how mRNA is delivered inside the cell. They found that mRNA uses an unexpected entry door. Their results provide novel insights into the development of RNA therapeutics towards efficient delivery and lower dosages.

DNA () contains the required for the development and maintenance of life. This information is communicated by messenger (mRNA) to make proteins. mRNA-based therapeutics have the potential to address unmet needs for a wide variety of diseases, including cancer and cardiovascular disease. mRNA can be delivered to cells to trigger the production, degradation or modification of a target protein, something impossible with other approaches. A key challenge with this modality is being able to deliver the mRNA inside the cell so that it can be translated to make a protein. mRNA can be packed into lipid nanoparticles (LNPs)—small bubbles of fat—that protect the mRNA and shuttle it into cells. However, this process is not simple, because the mRNA has to pass the membrane before it can reach its site of action in the cell interior, the cytoplasm.

Researchers in the team of MPI-CBG director Marino Zerial are experts in visualizing the cellular entry routes of molecules in the cell, such as mRNA with high-resolution microscopes. They teamed up with scientists from AstraZeneca who provided the researchers with lipid nanoparticle prototypes that they had developed for therapeutic approaches to follow the mRNA inside the cell. The study is published in the Journal of Cell Biology.

Flu virus shells could improve delivery of mRNA into cells

Nanoengineers at the University of California San Diego have developed a new and potentially more effective way to deliver messenger RNA (mRNA) into cells. Their approach involves packing mRNA inside nanoparticles that mimic the flu virus—a naturally efficient vehicle for delivering genetic material such as RNA inside cells.

The new mRNA nanoparticles are described in a paper published recently in the journal Angewandte Chemie International Edition.

The work addresses a major challenge in the field of drug delivery: Getting large biological drug molecules safely into and protecting them from organelles called endosomes. These tiny acid-filled bubbles inside the cell serve as barriers that trap and digest large molecules that try to enter. In order for biological therapeutics to do their job once they are inside the cell, they need a way to escape the endosomes.

HUMAN AUGMENTATION EXAMPLES — Webinar at Brave New World | Peter Joosten MSc

Human Augmentation Examples. What are examples of augmentations to the human body? Should we allow such augmentation methods and technologies? What are dangers, and risks involved? How can society benefit from these developments?

On Brave New World conference 2020 I gave this webinar with the title: ‘The Human Body. The Next Frontier’.

Please leave a comment if you like the video or when you have a question!

Content:
0:00 Start.
0:29 Introduction by moderator Jim Stolze.
1:05 My story.
2:54 Jetson Fallacy (by professor Michael Bess)
3:43 Examples: data, genetic modification, and neuroscience.
6:09 Benefits.
7:09 Risks and dangers.
8:28 Stakeholders: companies, countries, and military organizations.
11:54 Solutions: regulation, debate, and stories.
14:42 My conclusion.
15:03 End.

🙌 Hire me:
Keynote or webinar: https://peterjoosten.org.

🚀 Want to know more:

MIT researchers discover bacteria’s new antiviral defense system

Specific proteins in prokaryotes detect viruses in unexpectedly direct ways.

Bacteria use a variety of defense strategies to fight off viral infection. STAND ATPases in humans are known to respond to bacterial infections by inducing programmed cell death in infected cells. Scientists predict that many more antiviral weapons will be discovered in the microbial world in the future. Scientists have discovered a new unexplored microbial defense system in bacteria.

Researchers uncovered specific proteins in prokaryotes (bacteria and archaea) that detect viruses in unexpectedly direct ways, recognizing critical parts of the viruses and causing the single-celled organisms to commit suicide to stop the infection within a microbial community, according to a press release published in the official website of the Massachusetts Institute of Technology (MIT) on Thursday.

The discovery was made by a team of scientists led by researchers at the Broad Institute of MIT and Harvard and the McGovern Institute for Brain Research at MIT.

“This work demonstrates a remarkable unity in how pattern recognition occurs across very different organisms,” said Feng Zhang, senior author and James, and Patricia Poitras Professor of Neuroscience at MIT.

“It’s been very exciting to integrate genetics, bioinformatics, biochemistry, and structural biology approaches in one study to understand this fascinating molecular system.”

Bacteria use a variety of defense strategies to fight off viral infection, and some of these systems have led to groundbreaking technologies, such as CRISPR-based gene editing.

Scientists win 2015 Nobel Prize for Chemistry for work on DNA repair

Circa 2015


“Their work has provided fundamental knowledge of how a living cell functions and is, for instance, used for the development of new cancer treatments,” the Royal Swedish Academy of Sciences said.

Thousands of alterations to a cell’s genome occur every day due to spontaneous changes and damage by radiation, free radicals and carcinogenic substances — yet DNA remains astonishingly intact.

To keep genetic materials from disintegrating, a range of molecular systems monitor and repair DNA, in processes that the three award-winning scientists helped map out.

/* */