Menu

Blog

Archive for the ‘genetics’ category: Page 285

Oct 11, 2019

DNA Damage Leads to Epigenetic Alterations

Posted by in categories: biotech/medical, genetics, life extension

A team of researchers, including Dr. David Sinclair, has recently made a new study available as a preprint prior to peer review and publication in the journal Cell.

DNA damage and the double-strand break

Two of the primary hallmarks of aging are genomic instability, which consists of damage to our DNA, and epigenetic alterations, which are the changes in gene expression that occur with aging and are harmful to normal cell function.

Oct 11, 2019

Over 150,000 Americans Have Rare DNA Fluke and Don’t Know It, Study of 23andMe Data Finds

Posted by in categories: biotech/medical, genetics, health

A supposedly rare genetic quirk might be more common than we think, according to new research out Thursday. The study, based largely on 23andMe data, suggests that one in every 2,000 people are born with two copies of a gene from only a single parent, often with no serious health consequences.

Ordinarily, a person’s egg or sperm cells have one set of the genes that make up their chromosomes (other cells in our body have two sets). When a sperm fertilizes an egg, the resulting fertilized zygote will then have two sets of 23 chromosomes, one from each parent, making 46 chromosomes in total. If all goes well, the zygote multiplies and divides until it becomes a person, one with an even allocation of gene copies from both parents.

Oct 9, 2019

Tau-mediated RNA splicing errors linked to Alzheimer’s disease

Posted by in categories: biotech/medical, genetics, neuroscience

A collaborative study published today in the journal Cell Reports provides evidence for a new molecular cause for neurodegeneration in Alzheimer’s disease. The study, led by researchers at Baylor College of Medicine and the Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, integrates data from human brain autopsy samples and fruit flies to reveal a novel mechanistic link between alterations in RNA splicing and tau-mediated neurodegeneration in Alzheimer’s disease.

“Cells carry out their functions by producing specific proteins encoded in their genes. To produce proteins, genes encoded in the DNA are first transcribed into RNA molecules, which subsequently are translated into proteins,” said corresponding author Dr. Joshua Shulman, associate professor of neurology, neuroscience and molecular and human genetics at Baylor and investigator at the Jan and Dan Duncan Neurological Research Institute.

In this study, Shulman and his colleagues investigated a molecular mechanism called RNA splicing that is involved in the production of mature RNA molecules necessary to produce working proteins. They looked into the possibility that aggregates of within neurons, a key marker of Alzheimer’s disease, interfered with RNA splicing.

Oct 9, 2019

How Close Are We to Harnessing Synthetic Life?

Posted by in categories: bioengineering, biotech/medical, genetics, health

Scientists are exploring how to edit genomes and even create brand new ones that never existed before, but how close are we to harnessing synthetic life?
» Subscribe to Seeker! http://bit.ly/subscribeseeker
» Watch more How Close Are We | http://bit.ly/HCAWplaylist
» Follow Olivia on Instagram: instagram.com/OliviaPavcoG

Scientists have made major strides when it comes to understanding the base code that underlies all living things—but what if we could program living cells like software?

Continue reading “How Close Are We to Harnessing Synthetic Life?” »

Oct 9, 2019

Cervical cancer ‘cure’ closer with gene-editing breakthrough, scientists say

Posted by in categories: bioengineering, biotech/medical, genetics

Queensland researchers say they can cure cervical cancer in mice using gene editing technology and are now working towards human trials.

Oct 8, 2019

An Interview with Dr. Amutha Boominathan

Posted by in categories: biotech/medical, genetics, life extension

We recently had the opportunity to interview Dr. Amutha Boominathan from the SENS Research Foundation, at the Ending Age-Related Diseases 2019 conference about her research on mitochondrial repair therapies, the value of animal models, and her views on the future of aging research.

Dr. Amutha Boominathan received both her MSc and her PhD in Biochemistry from the University of Pune and the National Chemical Laboratory in India, respectively. She went on to do postdoctoral work in the U.S. relating to mitochondrial biogenesis at U. Penn and Rutgers University. She has extensively studied mechanisms of fusion and fission in mitochondria, Fe-S cluster biosynthesis, and protein import into mitochondria as part of her postdoctoral fellowship with the American Heart Association.

Currently, Amutha leads the MitoSENS program at SENS Research Foundation in Mountain view, California. Her research group is focusing on understanding mitochondrial DNA (mtDNA) mutations and restoring lost functionality as a result of these mutations by way of the allotopic expression of mitochondrial genes. Inherited mtDNA mutations can result in severe and debilitating diseases, such as NARP, Leigh’s syndrome and MELAS. Even in otherwise healthy individuals, mtDNA mutations accumulate with age. The MitoSENS team has already succeeded in stably expressing the ATP8 gene using their method and is looking forward to tackling each of the 13 mitochondrial protein genes in the coming years. Its goal is to develop safe and effective gene therapies for mitochondrial dysfunction.

Oct 7, 2019

Help to Crowdfund the SENS Research Foundation Transgenic Mouse Project to Move a Mitochondrial Gene into the Cell Nucleus

Posted by in categories: biotech/medical, genetics, life extension

The SENS Research Foundation science team is taking the next step in their work on moving mitochondrial genes into the cell nucleus, a process called allotopic expression. Having proven that they can carry out this task with the ATP8 gene in cells, they are now aiming at proof of principle in mice. This will require the production of transgenic mice, using a novel technology funded by the SENS Research Foundation called the maximally modifiable mouse. This mitochondrial project is being crowdfunded at Lifespan.io: you, I, and everyone else can contribute to advancing the state of the art one step further towards eliminating mitochondrial DNA damage as a cause of aging.

Mitochondria are the power plants of the cell, a herd of organelles descended from ancient symbiotic bacteria. They reproduce by replication and are recycled when damaged by cellular maintenance processes. Mitochondria carry the remnant of the original bacterial DNA, encoding thirteen genes vital to the process by which mitochondria package chemical energy store molecules. Unfortunately mitochondria generate reactive molecules as a byproduct of their operation, and this DNA is less well protected than the DNA of the cell nucleus. Some forms of damage to this DNA can break mitochondrial function in ways that allow the broken mitochondria to outcompete their functional peers, leading to dysfunctional cells that export massive quantities of damaging, oxidative molecules into the surrounding tissue. This contributes to conditions such as atherosclerosis, via the production of significant amounts of oxidized cholesterol in the body.

Allotopic expression of mitochondrial genes will work around this issue by providing a backup source of the proteins necessary to mitochondrial function. It has been demonstrated to work for ND4, and that project has been running for some years at Gensight Biologics to produce a therapy for inherited conditions that involve mutation of that gene. This work must expand, however, to encompass all thirteen genes of interest. So lend a hand, and help the SENS Research Foundation team take the next step forward in this process.

Oct 7, 2019

New research furthers understanding about what shapes human gut microbiome

Posted by in categories: biological, genetics, health

EVANSTON, Ill. — A new Northwestern University study finds that despite human’s close genetic relationship to apes, the human gut microbiome is more similar to that of Old World monkeys like baboons than to that of apes like chimpanzees.

These results suggest that human ecology has had a stronger impact in shaping the human gut microbiome than genetic relationships. The results also suggest the human gut microbiome may have unique characteristics compared to other primates, including increased flexibility.

“Understanding what factors shaped the human gut microbiome over evolutionary time can help us understand how gut microbes may have influenced adaptation and evolution in our ancestors and how they interact with our biology and health today,” said Katherine Amato, lead author of the study and assistant professor of anthropology in the Weinberg College of Arts and Sciences at Northwestern.

Oct 7, 2019

2019 Nobel Prize in Medicine Goes to Researchers Who Unraveled How Cells Sense Oxygen

Posted by in categories: biotech/medical, genetics

A trio of researchers from the U.S. and the UK has won the 2019 Nobel Prize in Medicine, the first of five prizes to be announced this week. On Monday in Sweden, the Nobel committee announced that Americans William Kaelin Jr. and Gregg Semenza, along with Peter Ratcliffe, would split the nearly million-dollar prize for their work in unraveling a fundamental aspect of life: how our cells keep track of and respond to fluctuating oxygen levels.

This year’s prize was decades in the making.

Though we’ve long known that our cells need oxygen to produce energy and keep us alive, we were largely in the dark on how cells sensed oxygen, or how they managed to adapt in times of low oxygen, a state known as hypoxia. In the early 1990s, Gregg Semenza, currently of Johns Hopkins University, and his team discovered some of the key genetic machinery that cells use to detect hypoxia and then respond by producing a hormone called erythropoietin (EPO).

Oct 7, 2019

‘Breakthrough’ microchip helps heals wounds and damaged organs

Posted by in categories: biotech/medical, computing, genetics

Circa 2017


The cells are converted by a small microchip, similar in size to a penny, which injects genetic code into skin cells, transforming them into other types of cell.