Toggle light / dark theme

Developmental genetics: How germ cells cut the cord from their parents

For the first cell to develop into an entire organism, genes, RNA molecules and proteins have to work together in a complex way. At first, this process is indirectly controlled by the mother. At a certain point in time, the protein GRIF-1 ensures that the offspring cut themselves off from this influence and start their own course of development. A research team from Martin Luther University Halle-Wittenberg (MLU) details how this process works in the journal Science Advances.

When a new organism starts to develop, the mother calls the shots. During fertilization, the and sperm fuse to form a single new cell. However, the course of , and thus how a new living being forms, is initially determined by the .

“Regardless of the organism, cell division is initially pre-programmed by the mother,” explains geneticist Professor Christian Eckmann from MLU. The mother’s cell provides a developmental starter set that includes the first proteins as well as the RNA molecules that serve as blueprints for further proteins. All this is necessary to jump start cell division and an organism’s development.

A genome-wide association study for overlap of 12 psychiatric disorders

A team of researchers from Vrije Universiteit Amsterdam in the Netherlands and the Veterans Administration in the U.S. has conducted a genome-wide association study looking into genetic overlap between 12 common psychiatric disorders. The group describes profiling pleiotropic genetic incidences to 12 common psychiatric disorders in their paper published in the journal Nature Genetics.

Many years ago, psychiatrists and other preferred to think of psychiatric conditions as separate diseases, unrelated to one another. More recently, genetics findings involved in psychiatric disorders have suggested that not only are some of them related, but some have overlap, which suggests that illnesses such as might have multiple forms, giving rise to a spectrum of diseases.

In this new effort, the research team conducted a cross-examination of 12 , looking specifically for genetic overlap. Their work involved conducting a cross-trait meta-analysis to study the impact of single-nucleotide polymorphisms (SNPs), genes in general, cells, pathways and tissue types that might be shared by the 12 disorders ADHD, alcoholism, anorexia, anxiety disorder, autism, bipolarism, depression, OCD, PTSD, schizophrenia and Tourette syndrome.

Surprising Finding: New Study Yields Clues to Genetic Causes of High Cholesterol

According to a recent study conducted by geneticists at the University of Pittsburgh School of Public Health in collaboration with several other organizations, including the University of Otago and the Samoan health research community, the discovery of a genetic variant that is relatively common among individuals of Polynesian descent but very rare in most other populations is providing clues to the genetic underpinnings of high cholesterol in all people.

Study finds DNA repair declines with age, limiting fertility

Even worms have a ticking fertility clock. Older worms are less efficient at repairing broken DNA strands while making egg cells—part of a process that’s essential for fertility. A new study from University of Oregon (UO) biologists suggests one possible reason that reproduction slows with age.

Researchers from the lab of Diana Libuda report the findings in a paper published Nov. 7 in PLOS Genetics.

Each sperm or egg cell has only half the number of chromosomes found in a regular cell. During meiosis, the cell division process that forms sperm and eggs, the parent cells must evenly divide their DNA. The costs of error can be high, since incorrectly divided chromosomes are a major cause of birth defects.

Should We Be Genetically Engineering Humans

Genetically engineering humans is a controversial topic. Some people believe that it is unethical, while others believe that it could be beneficial to humanity. There are pros and cons to both sides of the argument, and it is important to consider all of them before making a decision whether we should be genetically engineering humans or not.

The world’s smallest life form can now move, thanks to genetic engineering

In a breakthrough study, Japanese researchers at Osaka Metropolitan University have engineered the smallest motile life form ever. They introduced seven bacterial proteins into a synthetic bacterium, allowing it to move independently.

The rise of synthetic biology.

The new study is based on the synthetic bacterium called syn-3. The tiny spherical bacteria contain minimal genetic information, allowing them to grow and divide without motility.

The team experimented with syn-3 by introducing seven genes that code for proteins that are likely involved in the swimming motion of Spiroplasma bacteria.


UA/Wikimedia Commons.

Age Reversal

A lot of anti-ageing vids lately. Good. This concerns Turn.bio. Though not in this vid, MH does have a habit of asking ‘When?” at some point. Previously Turn.bio said they have a first working treatment in just a few years so we’ll see what happens in vids to come of this interview.


In this video Professor Sebastiano introduces ERA, Epigenetic Reprogramming of Age technology and talks about his thoughts on some of the causes of aging.

Professor Vittorio Sebastiano manages a lab in Stanford University which developed and patented technology for partial cellular reprogramming. He co-founded Turn Bio, where he is now Head of research, to translate this technology into clinical applications. And with that, let me start the interview.

Turn Bio website.
https://www.turn.bio/
Professor Sebastiano’s lab at Stanford.
https://med.stanford.edu/stemcell/institutefaculty/sebastiano.html.
Transient non-integrative expression of nuclear reprogramming factors promotes multifaceted amelioration of aging in human cells.
https://pubmed.ncbi.nlm.nih.gov/32210226/

Renue By Science 10% of all products: https://tinyurl.com/4yrf4tv3

HIV Vaccine Trial Makes Pivotal Leap Toward Making ‘Super Antibodies’

The announcement comes from the journal Science, which published Phase 1 results of a small clinical trial for a vaccine technology that aims to cause the body to create a rare kind of cell.

“At the most general level, the trial results show that one can design vaccines that induce antibodies with pre-specified genetic features, and this may herald a new era of precision vaccines,” William Schief, PhD, a researcher at The Scripps Research Institute and study co-author, told the American Association for the Advancement of Science (AAAS).

The study was the first to test the approach in humans and was effective in 97% – or 35 of 36 – participants. The vaccine technology is called “germline targeting.” Trial results show that “one can design a vaccine that elicits made-to-order antibodies in humans,” Schief said in a news release.

The Thymus As A Key Target For Aging Intervention — Dr. Greg Fahy — EARD 2022

This is a followup trial result to the first trial that reported 2.5 years of epigenetic age reversal This has interesting reports from the actual patients about how they feel and the changes it made to them. After the first trial I sent an email to see if I could do this but I have IBS which Fahy said would disqualify me.


Dr. Greg Fahy gives an update on the TRIIM-X clinical trial at EARD 2022.

The TRIIM-X clinical trial aims to understand how to create a personalized thymus regeneration regimen. By regenerating the thymus, the researchers hope to be able to prevent or reverse certain aspects of immune system aging.

FOLLOW US
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
https://www.lifespan.io.
https://www.facebook.com/lifespanio.
https://www.instagram.com/lifespan.io/

▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀

/* */