Toggle light / dark theme

Northwestern University synthetic biologists have developed a low-cost, easy-to-use, hand-held device that can let users know—within mere minutes—if their water is safe to drink.

The new device works by using powerful and programmable genetic networks, which mimic , to perform a range of logic functions.

Among the DNA-based circuits, for example, the researchers engineered cell-free molecules into an analog-to-digital converter (ADC), a ubiquitous circuit type found in nearly all electronic devices. In the -quality device, the ADC circuit processes an analog input (contaminants) and generates a digital output (a visual signal to inform the user).

Stephen Hawking made terrifying predictions of the future. Based on science, the late British physicists predicted several things that could happen on Earth, from the rise of powerful Artificial intelligence to fearful robots poised to destroy humankind. Hawking also spoke about how it was dangerous to search for aliens and how global warming could destroy Earth as we know it.

However, Stephen Hawking also spoke about how abrupt advances in genetic science could lead to creating a future generation of superhumans that could eventually destroy humanity as we know it.

In recently published papers, Prof. Hawking predicted that an elite class of physically altered, intellectually powerful humans could come into existence from rich people choosing to edit their existing DNA and manipulate future generations’ genetic markup.

Tae Seok Moon, associate professor of energy, environmental and chemical engineering at the McKelvey School of Engineering at Washington University in St. Louis, has taken a big step forward in his quest to design a modular, genetically engineered kill switch that integrates into any genetically engineered microbe, causing it to self-destruct under certain defined conditions.

His research was published Feb. 3 in the journal Nature Communications.

𝐌𝐞𝐝𝐢𝐜𝐚𝐥𝐗𝐩𝐫𝐞𝐬𝐬:

The Neuro-Network.

𝐑𝐞𝐬𝐞𝐚𝐫𝐜𝐡𝐞𝐫𝐬 𝐢𝐧𝐭𝐫𝐨𝐝𝐮𝐜𝐞 𝐢𝐧𝐭𝐨 𝐡𝐮𝐦𝐚𝐧 𝐜𝐞𝐥𝐥𝐬 𝐚 𝐠𝐞𝐧𝐞𝐭𝐢𝐜 𝐦𝐮𝐭𝐚𝐭𝐢𝐨𝐧 𝐭𝐡𝐚𝐭 𝐩𝐫𝐨𝐭𝐞𝐜𝐭𝐬 𝐚𝐠𝐚𝐢𝐧𝐬𝐭 𝐀𝐥𝐳𝐡𝐞𝐢𝐦𝐞𝐫’𝐬 𝐝𝐢𝐬𝐞𝐚𝐬𝐞

𝙍𝙚𝙨𝙚𝙖𝙧𝙘𝙝𝙚𝙧𝙨 𝙛𝙧𝙤𝙢 𝙩𝙝𝙚 𝙐𝙣𝙞𝙫𝙚𝙧𝙨𝙞𝙩𝙚́ 𝙇𝙖𝙫𝙖𝙡 𝙁𝙖𝙘𝙪𝙡𝙩𝙮 𝙤𝙛 𝙈𝙚𝙙𝙞𝙘𝙞𝙣𝙚 𝙖… See more.


Researchers from the Université Laval Faculty of Medicine and CHU de Québec–Université Laval Research Center have successfully edited the genome of human cells grown in vitro to introduce a mutation providing protection against Alzheimer’s disease. The details of this breakthrough were recently published in The CRISPR Journal.

“Some increase the risk of developing Alzheimer’s disease, but there is a mutation that reduces this risk,” says lead author Professor Jacques-P. Tremblay. “This is a rare mutation identified in 2012 in the Icelandic population. The mutation has no known disadvantage for those who carry it and reduces the risk of developing Alzheimer’s disease. Using an improved version of the CRISPR gene editing tool, we have been able to edit the genome of human cells to insert this mutation.”

Not science, apparentlyLast month, a Ph.D. student at the Hebrew University of Jerusalem breed a new strain of ‘supercharged’ lettuce that expanded its vitamin C and beta carotene content by 800 percent and 70 percent respectively.


Research Interests.

Genomic/metabolomic/proteomic approaches for identification of novel (regulatory and biosynthetic) aroma genes.

Metabolic engineering of plants and yeast.

Site-specific genome modification and genetic engineering in plants.

New Israeli startup aims to get product to market within two years; technology could also be used to identify early markers of cancer.

An Israeli startup is developing a non-invasive early detection method using artificial intelligence (AI) to identify genetic disorders in human embryos.

Via a simple blood test taken from the pregnant mother during the first trimester, IdentifAI Genetics can read the embryo’s entire DNA and provide in-depth analysis to detect genetic disorders.

Multiple changes in brain cells during the first month of embryonic development may contribute to schizophrenia later in life, according to a new study by Weill Cornell Medicine investigators.

The researchers, whose study was published in Molecular Psychiatry, used stem cells collected from patients with schizophrenia and people without the disease to grow 3-dimensional “mini-brains” or organoids in the laboratory. By comparing the development of both sets of organoids, they discovered that a reduced expression of two genes in the cells stymies early development and causes a shortage of brain cells in organoids grown from patient stem cells.

“This discovery fills an important gap in scientists’ understanding of schizophrenia,” said senior author Dr. Dilek Colak, assistant professor of neuroscience at the Feil Family Brain and Mind Institute and the Center for Neurogenetics at Weill Cornell Medicine. Symptoms of schizophrenia typically develop in adulthood, but postmortem studies of the brains of people with the disease found enlarged cavities called ventricles and differences in the cortical layers that likely occurred early in life.

A cloud-based repository that creates a digital fingerprint of engineered microorganisms has been successfully trialed.

An international team led by Newcastle University has launched CellRepo, a species and strain database that uses cell barcodes to monitor and track engineered organisms. Reported in a new study in the journal Nature Communications, the database keeps track and organizes the digital data produced during cell engineering. It also molecularly links that data to the associated living samples.

Available globally, this resource supports and has significant safety advantages, such as limiting the impact of deliberately or accidentally released genetically modified microorganisms by enabling faster tracing of organisms lab of origin and design details.