Toggle light / dark theme

Giant planets ignition

I wrote an essay on the theme of the possibility of artificial initiation and fusion explosion of giants planets and other objects of Solar system. It is not a scientific article, but an atempt to collect all nesessary information about this existential risk. I conclude that it could not be ruled out as technical possibility, and could be made later as act of space war, which could clean entire Solar system.

Where are some events which are very improbable, but which consequence could be infinitely large (e.g. black holes on LHC.) Possibility of nuclear ignition of self-containing fusion reaction in giant planets like Jupiter and Saturn which could lead to the explosion of the planet, is one of them.

Inside the giant planets is thermonuclear fuel under high pressure and at high density. This density for certain substances is above (except water, perhaps) than the density of these substances on Earth. Large quantities of the substance would not have fly away from reaction zone long enough for large energy relize. This fuel has never been involved in fusion reactions, and it remained easy combustible components, namely, deuterium, helium-3 and lithium, which have burned at all in the stars. In addition, the subsoil giant planets contain fuel for reactions, which may prompt an explosive fire — namely, the tri-helium reaction (3 He 4 = C12) and for reactions to the accession of hydrogen to oxygen, which, however, required to start them much higher temperature. Substance in the bowels of the giant planets is a degenerate form of a metal sea, just as the substance of white dwarfs, which regularly takes place explosive thermonuclear burning in the form of helium flashes and the flashes of the first type of supernova.
The more opaque is environment, the greater are the chances for the reaction to it, as well as less scattering, but in the bowels of the giant planets there are many impurities and can be expected to lower transparency. Gravitational differentiation and chemical reactions can lead to the allocation of areas within the planet that is more suitable to run the reaction in its initial stages.

The stronger will be an explosion of fuse, the greater will be amount of the initial field of burning, and the more likely that the response would be self-sustaining, as the energy loss will be smaller and the number of reaction substances and reaction times greater. It can be assumed that if at sufficiently powerful fuse the reaction will became self-sustaining.

Recently Galileo spacecraft was drawn in the Jupiter. Galileo has nuclear pellets with plutonium-238 which under some assumption could undergo chain reaction and lead to nuclear explosion. It is interesting to understand if it could lead to the explosion of giant planet. Spacecraft Cassini may soon enter Saturn with unknown consequences. In the future deliberate ignition of giant planet may become a mean of space war. Such event could sterilize entire Solar system.

Scientific basis for our study could be found in the article “Necessary conditions for the initiation and propagation of nuclear detonation waves in plane atmospheras”.
Tomas Weaver and A. Wood, Physical review 20 – 1 Jule 1979,
http://www.lhcdefense.org/pdf/LHC%20-%20Sancho%20v.%20Doe%20…tion-1.pdf

It rejected the possibility of extending the thermonuclear detonation in the Earth’s atmosphere in Earth’s oceans to balance the loss of radiation (one that does not exclude the possibility of reactions, which take little space comparing the amount of earthly matter — but it’s enough to disastrous consequences and human extinction.)

There it is said: “We, therefore, conclude that thermonuclear-detonation waves cannot propagate in the terrestrial ocean by any mechanism by an astronomically large margin.

It is worth noting, in conclusion, that the susceptability to thermonuclear detonation of a large body of hydrogenous material is an ex¬ceedingly sensitive function of its isotopic com¬position, and, specifically, to the deuterium atom fraction, as is implicit in the discussion just preceding. If, for instance, the terrestrial oceans contained deuterium at any atom fraction greater than 1:300 (instead of the actual value of 1: 6000), the ocean could propagate an equilibrium thermonuclear-detonation wave at a temperature £2 keV (although a fantastic 10**30 ergs—2 × 10**7 MT, or the total amount of solar energy incident on the Earth for a two-week period—would be required to initiate such a detonation at a deuter¬*ium concentration of 1: 300). Now a non-neg-ligible fraction of the matter in our own galaxy exists at temperatures much less than 300 °K, i.e., the gas-giant planets of our stellar system, nebulas, etc. Furthermore, it is well known that thermodynamically-governed isotopic fractionation ever more strongly favors higher relative concentration of deuterium as the temperature decreases, e.g., the D:H concentration ratio in the ~10**2 К Great Nebula in Orion is about 1:200.45 Finally, orbital velocities of matter about the galactic center of mass are of the order of 3 × 10**7 cm /sec at our distance from the galactic core.

It is thus quite conceivable that hydrogenous matter (e.go, CH4, NH3, H2O, or just H2) relatively rich in deuterium (1 at. %) could accumulate at its normal, zero-pressure density in substantial thicknesses or planetary surfaces, and such layering might even be a fairly common feature of the colder, gas-giant planets. If thereby highly enriched in deuterium (£10 at. %), thermonuclear detonation of such layers could be initiated artificially with attainable nuclear explosives. Even with deuterium atom fractions approaching 0.3 at. % (less than that observed over multiparsec scales in Orion), however, such layers might be initiated into propagating thermonuclear detonation by the impact of large (diam 10**2 m), ultra-high velocity (^Зх 10**7 cm/sec) meteors or comets originating from nearer the galactic center. Such events, though exceedingly rare, would be spectacularly visible on distance scales of many parsecs.”

Full text of my essay is here: http://www.scribd.com/doc/8299748/Giant-planets-ignition

Refuges and bunkers

Here I would like to suggest readers a quotation from my book “Structure of the global catastrophe” (http://www.scribd.com/doc/7529531/-) there I discuss problems of preventing catastrophes.

Refuges and bunkers

Different sort of a refuge and bunkers can increase chances of survival of the mankind in case of global catastrophe, however the situation with them is not simple. Separate independent refuges can exist for decades, but the more they are independent and long-time, the more efforts are necessary for their preparation in advance. Refuges should provide ability for the mankind to the further self-reproduction. Hence, they should contain not only enough of capable to reproduction people, but also a stock of technologies which will allow to survive and breed in territory which is planned to render habitable after an exit from the refuge. The more this territory will be polluted, the higher level of technologies is required for a reliable survival.
Very big bunker will appear capable to continue in itself development of technologies and after catastrophe. However in this case it will be vulnerable to the same risks, as all terrestrial civilisation — there can be internal terrorists, AI, nanorobots, leaks etc. If the bunker is not capable to continue itself development of technologies it, more likely, is doomed to degradation.
Further, the bunker can be or «civilizational», that is keep the majority of cultural and technological achievements of the civilisation, or “specific”, that is keep only human life. For “long” bunkers (which are prepared for long-term stay) the problem of formation and education of children and risks of degradation will rise. The bunker can or live for the account of the resources which have been saved up before catastrophe, or be engaged in own manufacture. In last case it will be simply underground civilisation on the infected planet.
The more a bunker is constructed on modern technologies and independent cultural and technically, the higher ammount of people should live there (but in the future it will be not so: the bunker on the basis of advanced nanotechnology can be even at all deserted, — only with the frozen human embryos). To provide simple reproduction by means of training to the basic human trades, thousand people are required. These people should be selected and be in the bunker before final catastrophe, and, it is desirable, on a constant basis. However it is improbable, that thousand intellectually and physically excellent people would want to sit in the bunker “just in case”. In this case they can be in the bunker in two or three changes and receive for it a salary. (Now in Russia begins experiment «Mars 500» in which 6 humans will be in completely independent — on water, to meal, air — for 500 days. Possibly, it is the best result which we now have. In the early nineties in the USA there was also a project «Biosphera-2» in which people should live two years on full self-maintenance under a dome in desert. The project has ended with partial failure as oxygen level in system began to fall because of unforeseen reproduction of microorganisms and insects.) As additional risk for bunkers it is necessary to note fact of psychology of the small groups closed in one premise widely known on the Antarctic expeditions — namely, the increase of animosities fraught with destructive actions, reducing survival rate.
The bunker can be either unique, or one of many. In the first case it is vulnerable to different catastrophes, and in the second is possible struggle between different bunkers for the resources which have remained outside. Or is possible war continuation if catastrophe has resulted from war.
The bunker, most likely, will be either underground, or in the sea, or in space. But the space bunker too can be underground of asteroids or the Moon. For the space bunker it will be more difficult to use the rests of resources on the Earth. The bunker can be completely isolated, or to allow “excursion” in the external hostile environment.
As model of the sea bunker can serve the nuclear submarine possessing high reserve, autonomy, manoeuvrability and stability to negative influences. Besides, it can easily be cooled at ocean (the problem of cooling of the underground closed bunkers is not simple), to extract from it water, oxygen and even food. Besides, already there are ready boats and technical decisions. The boat is capable to sustain shock and radiating influence. However the resource of independent swimming of modern submarines makes at the best 1 year, and in them there is no place for storage of stocks.
Modern space station ISS could support independently life of several humans within approximately year though there are problems of independent landing and adaptation. Not clearly, whether the certain dangerous agent, capable to get into all cracks on the Earth could dissipate for so short term.
There is a difference between gaso — and bio — refuges which can be on a surface, but are divided into many sections for maintenance of a mode of quarantine, and refuges which are intended as a shelter from in the slightest degree intelligent opponent (including other people who did not manage to get a place in a refuge). In case of biodanger island with rigid quarantine can be a refuge if illness is not transferred by air.
A bunker can possess different vulnerabilities. For example, in case of biological threat, is enough insignificant penetration to destroy it. Only hi-tech bunker can be the completely independent. Energy and oxygen are necessary to the bunker. The system on a nuclear reactor can give energy, but modern machines hardly can possess durability more than 30–50 years. The bunker cannot be universal — it should assume protection against the certain kinds of threats known in advance — radiating, biological etc.
The more reinforced is a bunker, the smaller number of bunkers can prepare mankind in advance, and it will be more difficult to hide such bunker. If after a certain catastrophe there was a limited number of the bunkers which site is known, the secondary nuclear war can terminate mankind through countable number of strikes in known places.
The larger is the bunker, the less amount of such bunkers is possible to construct. However any bunker is vulnerable to accidental destruction or contamination. Therefore the limited number of bunkers with certain probability of contamination unequivocally defines the maximum survival time of mankind. If bunkers are connected among themselves by trade and other material distribution, contamination between them is more probable. If bunkers are not connected, they will degrade faster. The more powerfully and more expensively is the bunker, the more difficult is to create it imperceptibly for the probable opponent and so it easeir becomes the goal for an attack. The more cheaply the bunker, the less it is durable.
Casual shelters — the people who have escaped in the underground, mines, submarines — are possible. They will suffer from absence of the central power and struggle for resources. The people, in case of exhaustion of resources in one bunker, can undertake the armed attempts to break in other next bunker. Also the people who have escaped casually (or under the threat of the comong catastrophe), can attack those who was locked in the bunker.
Bunkers will suffer from necessity of an exchange of heat, energy, water and air with an external world. The more independent is the bunker, the less time it can exist in full isolation. Bunkers being in the Earth will deeply suffer from an overheating. Any nuclear reactors and other complex machines will demand external cooling. Cooling by external water will unmask them, and it is impossible to have energy sources lost-free in the form of heat, while on depth of earth there are always high temperatures. Temperature growth, in process of deepening in the Earth, limits depth of possible bunkers. (The geothermal gradient on the average makes 30 degrees C/kilometers. It means, that bunkers on depth more than 1 kilometre are impossible — or demand huge cooling installations on a surface, as gold mines in the republic of South Africa. There can be deeper bunkers in ices of Antarctica.)
The more durable, more universal and more effective, should be a bunker, the earlier it is necessary to start to build it. But in this case it is difficult to foresee the future risks. For example, in 1930th years in Russia was constructed many anti-gase bombproof shelters which have appeared useless and vulnerable to bombardments by heavy demolition bombs.
Efficiency of the bunker which can create the civilisation, corresponds to a technological level of development of this civilisation. But it means that it possesses and corresponding means of destruction. So, especially powerful bunker is necessary. The more independently and more absolutely is the bunker (for example, equipped with AI, nanorobots and biotechnologies), the easier it can do without, eventually, people, having given rise to purely computer civilisation.
People from different bunkers will compete for that who first leaves on a surface and who, accordingly, will own it — therefore will develop the temptation for them to go out to still infected sites of the Earth.
There are possible automatic robotic bunkers: in them the frozen human embryos are stored in a certain artificial uterus and through hundreds or thousand years start to be grown up. (Technology of cryonics of embryos already exists, and works on an artificial uterus are forbidden for bioethics reasons, but basically such device is possible.) With embryos it is possible to send such installations in travel to other planets. However, if such bunkers are possible, the Earth hardly remains empty — most likely it will be populated with robots. Besides, if the human cub who has been brought up by wolves, considers itself as a wolf as whom human who has been brought up by robots will consider itself?
So, the idea about a survival in bunkers contains many reefs which reduce its utility and probability of success. It is necessary to build long-term bunkers for many years, but they can become outdated for this time as the situation will change and it is not known to what to prepare. Probably, that there is a number of powerful bunkers which have been constructed in days of cold war. A limit of modern technical possibilities the bunker of an order of a 30-year-old autonomy, however it would take long time for building — decade, and it will demand billions dollars of investments.
Independently there are information bunkers, which are intended to inform to the possible escaped descendants about our knowledge, technologies and achievements. For example, in Norway, on Spitsbergen have been created a stock of samples of seeds and grain with these purposes (Doomsday Vault). Variants with preservation of a genetic variety of people by means of the frozen sperm are possible. Digital carriers steady against long storage, for example, compact discs on which the text which can be read through a magnifier is etched are discussed and implemented by Long Now Foundation. This knowledge can be crucial for not repeating our errors.

Global risk researches in Russia

1. Language and cultural isolation lead to the situation then Russian researches are not known in West and vice versa. I spent a lot of time translating into Russian and promoting works of Bostrom, Yudkowsky, Circovic, D.Brin, Freitas, A.Kent and other writers on global risks. Here I would like to tell you about some Russian researchers. Though I can’t prove validity of their ideas I think they should be checked internationally in order to roll out them or to take preventive measures. A. V. Karnauhov created a theory of “green house” catastrophe. He shows that climate is non linear system this many positive feedbacks and one of them is often missed – it is that water vapor is also greenhouse gas and growing temperatures would lead to injection of more and more water vapor into atmosphere. Also current level of carbon dioxid should lead to much more temperature increase, but inertia of ocean temperature makes current temperature smaller. But ocean temperature will rise, especially in Arctic, where large amounts of methane stored under seebed on the low shallow waters. This would lead to clarhat gun explosion of metane. Cumulative effect of water vapor, CO2, Metane and surmounting of ocean inertia will lead to very quick exponential global warming, which could have devastating effects as early as in 2020th and make global temperature higher not on 6 degrees but on several tens to the end of the century – which would mean human extinction, and after 200 years all life extinction on Earth Some his ideas you could see in the article: http://www.poteplenie.ru/doc/role.pdf Karnaukhov A.V. Role of the biosphere in the formation of the Earth’s Climate: The Greenhouse Catastrophe, Biophysics, Vol.46, No 6, 2001, pp. 1078–1088. Also I should mention works of Drobishevsky “Danger of the explosion of Callisto and the priority of space missions” http://www.springerlink.com/content/584mw0407824nt72/ He thinks that Jovian satellite Callisto could soon explode because of H and O reaction in its ice. Such explosion will lead to bombardment of the earth by comets and “nuclear winter” for 60 years. He suggested to send there a space mission. But I wrote him that, if he is write, it is very dangerous to send where mission, because it could trigger the explosion by drilling the ice crust. And the last man, about whom I would like to tell you, is a reviewer of my book “the Structure of the global catastrophe” Aranowich, who told me by way that his group has created much more effective way to penetrate the earth crust the Stevenson’s probe. Stevenson’s probe require 10 million ton of melted iron. His probe will weight only 10 tons and will use an energy of radioactive decay. It could reach 1000 km depth by one month – and the main danger is creation of supervolcano. Then I asked him, was any safety analysis done – he said not. But this is only theoretical work and no practical realization is planned.
2. I have wrote a book “The structure of global catastrophe” which aim was to investigate how different scenarios of global risks could interact in time, because all of them could realize in the XXI century. This book is sponsored by Russian Transhumanist movemet. Nick Bostrom wrote short preface to it. The book is mostly ready, but some editorial and organizational problems still persists. I hope it will be published by the end of the year.
3. I am started to translate this book into English. I have translated it by computer and then edit the result – now I am on the page 27 of 390. I need someone with native English who could help me to edit this translation. The book is here: http://avturchin.narod.ru/sgkengl2.doc I hope to finish English translation (in readable, but not high literature quality:) of the book until winter.
4. The shorter version of this book is already published on the name “War and 25 other scenarios of the End of the world”. This name was suggested by editorial house, the original name was: “Gnoseology of catastrophes”. The main idea of the book is that our inability to predict the future is equal to the end of the world.
5. I have translated the most part of Lifeboat site on Russian and I expect it will appear in the Net soon.
6. I have wrote several articles on the theme of global catastrophe: “Is SETI dangerous? English translation — http://www.proza.ru/texts/2008/04/12/55.html, “Atrophic principle and natural catastrophes” http://www.proza.ru/texts/2007/04/12-13.html and “About possibilities of manmade ignition of giant planets and other objects of Solar system” http://www.proza.ru/texts/2008/07/19/466.html which are in Russian.
7. I have created “Global catastrophic risks and human extinction library” there you could find many interesting literature on English and Russian. http://avturchin.narod.ru/Global.htm
8. I think that it is provable that if humanity will unite, it will have a chance to resist global risks, but if it will be divided on military competing parts, it almost doomed. Resent events on Caucasus put again in agenda the question of New cold war. Here we should ask what is the worst outcome of possible Cold war? Common answer is that Nuclear war is that worst outcome. But Nuclear war will not terminate all human population in most realistic scenarios. Much worse outcome is, I think, new arm race, which could lead to quick creation of much more destructive weapons, than nuclear. And the worst outcome of arm race is creation of Doomsday machine. Doomsday machine (DM) is ultimate defense weaponry. The example of such strategy was depicted by Kubrick in his genius movie “Dr. Strangelove”. Here we should say that DM-strategy is more suitable for a weaker state, which is in danger of aggression (or feels so). Quality of Russian nuclear forces is continue to deteriorating and minimum is expected around the year 2010 then most of old soviets rockets should be out of order. Simultaneously after the year 2010 US will rich a peak of their supremacy (because of thousand non nuclear cruise missiles, unique GPS system and antimissile shield it will have ability to make first strike without answer.), but later could lose supremacy because of economic crisis in US and growing arsenal of new Russian missiles. This situation looks dangerous, because from chess we know the principle: “Someone must attack under threat of losing his supremacy”. And antiballistic missile shield (ABM), which is developing now by NATO is very dangerous because it makes direct way to the creation of Doomsday Machine. Before ABM rockets were good as a mean of defense. But now only large underground bomb (gigaton order and with cobalt shield) could be a strategic defense. Such ideas is not only my creation but they are circulating in the air. Of course nobody is going to actually use such weapon, but it could be lunched accidentally. It should not be nuclear – it could be also large stockpile of anthrax, manmade supervulcano-threat or something more sophisticated. DM also could be used as a offensive mean. If Osama get it, he could say: everybody should convert in Islam, or I detonate it. The really big problem arise if in answer someone Catholic say: if anyone convert in Islam I will detonate my own Doomsday machine. In this case we finally doomed. But worst case scenarios are low probability ones, so I hope we have a chance to unite.

SRA Proposal Accepted

My proposal for the Society for Risk Analysis’s annual meeting in Boston has been accepted, in oral presentation format, for the afternoon of Wednesday, December 10th, 2008. Any Lifeboat members who will be in the area at the time are more than welcome to attend. Any suggestions for content would also be greatly appreciated; speaking time is limited to 15 minutes, with 5 minutes for questions. The abstract for the paper is as follows:

Global Risk: A Quantitative Analysis

The scope and possible impact of global, long-term risks presents a unique challenge to humankind. The analysis and mitigation of such risks is extremely important, as such risks have the potential to affect billions of people worldwide; however, little systematic analysis has been done to determine the best strategies for overall mitigation. Direct, case-by-case analysis can be combined with standard probability theory, particularly Laplace’s rule of succession, to calculate the probability of any given risk, the scope of the risk, and the effectiveness of potential mitigation efforts. This methodology can be applied both to well-known risks, such as global warming, nuclear war, and bio-terrorism, and lesser-known or unknown risks. Although well-known risks are shown to be a significant threat, analysis strongly suggests that avoiding the risks of technologies which have not yet been developed may pose an even greater challenge. Eventually, some type of further quantitative analysis will be necessary for effective apportionment of government resources, as traditional indicators of risk level- such as press coverage and human intuition- can be shown to be inaccurate, often by many orders of magnitude.

More details are available online at the Society for Risk Analysis’s website. James Blodgett will be presenting on the precautionary principle two days earlier (Monday, Dec. 8th).

30 days to make antibodies to limit Pandemics

Researchers have devised a rapid and efficient method for generating protein sentinels of the immune system, called monoclonal antibodies, which mark and neutralize foreign invaders.

For both ethical and practical reasons, monoclonals are usually made in mice. And that’s a problem, because the human immune system recognizes the mouse proteins as foreign and sometimes attacks them instead. The result can be an allergic reaction, and sometimes even death.

To get around that problem, researchers now “humanize” the antibodies, replacing some or all of mouse-derived pieces with human ones.

Wilson and Ahmed were interested in the immune response to vaccination. Conventional wisdom held that the B-cell response would be dominated by “memory” B cells. But as the study authors monitored individuals vaccinated against influenza, they found that a different population of B cells peaked about one week after vaccination, and then disappeared, before the memory cells kicked in. This population of cells, called antibody-secreting plasma cells (ASCs), is highly enriched for cells that target the vaccine, with vaccine-specific cells accounting for nearly 70 percent of all ASCs.

“That’s the trick,” said Wilson. “So instead of one cell in 1,000 binding to the vaccines, now it is seven in 10 cells.”

All of a sudden, the researchers had access to a highly enriched pool of antibody-secreting cells, something that is relatively easy to produce in mice, but hard to come by for human B cells.

To ramp up the production and cloning of these antibodies, the researchers added a second twist. Mouse monoclonal antibodies are traditionally produced in the lab from hybridomas, which are cell lines made by fusing the antibody-producing cell with a cancer cell. But human cells don’t respond well to this treatment. So Wilson and his colleagues isolated the ASC antibody genes and transferred them into an “immortalized” cell line. The result was the generation of more than 100 different monoclonals in less than a year, with each taking just a few weeks to produce.

In the event of an emerging flu pandemic, for instance, this approach could lead to faster production of human monoclonals to both diagnose and protect against the disease.

Journal Nature article: Rapid cloning of high-affinity human monoclonal antibodies against influenza virus

Nature 453, 667–671 (29 May 2008) | doi:10.1038/nature06890; Received 16 October 2007; Accepted 4 March 2008; Published online 30 April 2008

Pre-existing neutralizing antibody provides the first line of defence against pathogens in general. For influenza virus, annual vaccinations are given to maintain protective levels of antibody against the currently circulating strains. Here we report that after booster vaccination there was a rapid and robust influenza-specific IgG+ antibody-secreting plasma cell (ASC) response that peaked at approximately day 7 and accounted for up to 6% of peripheral blood B cells. These ASCs could be distinguished from influenza-specific IgG+ memory B cells that peaked 14–21 days after vaccination and averaged 1% of all B cells. Importantly, as much as 80% of ASCs purified at the peak of the response were influenza specific. This ASC response was characterized by a highly restricted B-cell receptor (BCR) repertoire that in some donors was dominated by only a few B-cell clones. This pauci-clonal response, however, showed extensive intraclonal diversification from accumulated somatic mutations. We used the immunoglobulin variable regions isolated from sorted single ASCs to produce over 50 human monoclonal antibodies (mAbs) that bound to the three influenza vaccine strains with high affinity. This strategy demonstrates that we can generate multiple high-affinity mAbs from humans within a month after vaccination. The panel of influenza-virus-specific human mAbs allowed us to address the issue of original antigenic sin (OAS): the phenomenon where the induced antibody shows higher affinity to a previously encountered influenza virus strain compared with the virus strain present in the vaccine1. However, we found that most of the influenza-virus-specific mAbs showed the highest affinity for the current vaccine strain. Thus, OAS does not seem to be a common occurrence in normal, healthy adults receiving influenza vaccination.

Preventing flu fatalities by stopping immune system overreaction

Researchers from Imperial College in London, England, isolated the receptor in the lungs that triggers the immune overreaction to flu.

With the receptor identified, a therapy can be developed that will bind to the receptor, preventing the deadly immune response. Also, by targeting a receptor in humans rather than a particular strain of flu, therapies developed to exploit this discovery would work regardless of the rapid mutations that beguile flu vaccine producers every year.

The flu kills 250,000 to 500,000 people in an average year with epidemics reaching 1 to 2 million deaths (other than the spanish flu which was more severe

This discovery could lead to treatments which turn off the inflammation in the lungs caused by influenza and other infections, according to a study published today in the journal Nature Immunology. The virus is often cleared from the body by the time symptoms appear and yet symptoms can last for many days, because the immune system continues to fight the damaged lung. The immune system is essential for clearing the virus, but it can damage the body when it overreacts if it is not quickly contained.

The immune overreaction accounts for the high percentage of young, healthy people who died in the vicious 1918 flu pandemic. While the flu usually kills the very young or the sickly and old, the pandemic flu provoked healthy people’s stronger immune systems to react even more profoundly than usual, exacerbating the symptoms and ultimately causing between 50 and 100 million deaths world wide. These figures from the past make the new discovery that much more important, as new therapies based on this research could prevent a future H5N1 bird flu pandemic from turning into a repeat of the 1918 Spanish flu.

In the new study, the researchers gave mice infected with influenza a mimic of CD200, or an antibody to stimulate CD200R, to see if these would enable CD200R to bring the immune system under control and reduce inflammation.

The mice that received treatment had less weight loss than control mice and less inflammation in their airways and lung tissue. The influenza virus was still cleared from the lungs within seven days and so this strategy did not appear to affect the immune system’s ability to fight the virus itself.

The researchers hope that in the event of a flu pandemic, such as a pandemic of H5N1 avian flu that had mutated to be transmissible between humans, the new treatment would add to the current arsenal of anti-viral medications and vaccines. One key advantage of this type of therapy is that it would be effective even if the flu virus mutated, because it targets the body’s overreaction to the virus rather than the virus itself.

In addition to the possible applications for treating influenza, the researchers also hope their findings could lead to new treatments for other conditions where excessive immunity can be a problem, including other infectious diseases, autoimmune diseases and allergy.

Apophis Asteroid still a risk for 2036

On April 16, 2008, NASA News Release 08–103 reaffirmed that its estimation of a 1 in 45,000 chance of impact in 2036 remains valid.

The B612 Foundation is working towardcs the goal of of significantly altering the orbit of an asteroid in a controlled manner by 2015.

the B612 Foundation made estimates of Apophis path if a 2036 Earth impact were to occur.

The impact result is a narrow corridor called the ‘risk corrider’ which would be a few miles wide. Countries estimated to be in the direct path:

- southern Russia,
- across the north Pacific Ocean (relatively close to the coastlines of the California and Mexico), then
- right between Nicaragua and Costa Rica,
- crossing northern Colombia and
- Venezuela and over the Caribbean islands of Trinidad and Tobago,
- over the Atlantic Ocean to the west coast of Africa.


Earth’s Path of Risk for the 99942 Apophis Asteroid that is suspected to be on track for a collision course with earth in the year 2036. This image is self-made from data estimated by the B612 Foundation, this is why it is just an approximation. Credit: Mario Roberto Duran Ortiz Mariordo and the re-use of this image is based on ‘Fair use’ of public domain info by the B612 Foundation work on Apophis.

The hypothetical impact of Apophis along the path of risk could have more than 10 million casualties, however the threatened zones would be evacuated [as per B612 foundation comment. The threat of casualties would be for a similar sized object, if it was not detected.].

Spaceworks Engineering had an award winning plan to send a spacecraft to shadow the Apophis asteroid

A video Foresight: A Radio Beacon Mission to Asteroid Apophis is on Youtube.

The Foresight final report is here

As of October 19, 2006 [and also April 16, 2008′, the impact probability for April 13, 2036, was calculated as 1 in 45,000. An additional impact date in 2037 was also identified; the impact probability for that encounter was calculated as 1 in 12.3 million.

$153 million/city thin film plastic domes can protect against nuclear weapons and bad weather

Cross posted from Nextbigfuture

Click for larger image

I had previously looked at making two large concrete or nanomaterial monolithic or geodesic domes over cities which could protect a city from nuclear bombs.

Now Alexander Bolonkin has come up with a cheaper, technological easy and more practical approach with thin film inflatable domes. It not only would provide protection form nuclear devices it could be used to place high communication devices, windmill power and a lot of other money generating uses. The film mass covered of 1 km**2 of ground area is M1 = 2×10**6 mc = 600 tons/km**2 and film cost is $60,000/km**2.
The area of big city diameter 20 km is 314 km**2. Area of semi-spherical dome is 628 km2. The cost of Dome cover is 62.8 millions $US. We can take less the overpressure (p = 0.001atm) and decrease the cover cost in 5 – 7 times. The total cost of installation is about 30–90 million $US. Not only is it only about $153 million to protect a city it is cheaper than a geosynchronous satellite for high speed communications. Alexander Bolonkin’s website

The author suggests a cheap closed AB-Dome which protects the densely populated cities from nuclear, chemical, biological weapon (bombs) delivered by warheads, strategic missiles, rockets, and various incarnations of aviation technology. The offered AB-Dome is also very useful in peacetime because it shields a city from exterior weather and creates a fine climate within the ABDome. The hemispherical AB-Dome is the inflatable, thin transparent film, located at altitude up to as much as 15 km, which converts the city into a closed-loop system. The film may be armored the stones which destroy the rockets and nuclear warhead. AB-Dome protects the city in case the World nuclear war and total poisoning the Earth’s atmosphere by radioactive fallout (gases and dust). Construction of the AB-Dome is easy; the enclosure’s film is spread upon the ground, the air pump is turned on, and the cover rises to its planned altitude and supported by a small air overpressure. The offered method is cheaper by thousand times than protection of city by current antirocket systems. The AB-Dome may be also used (height up to 15 and more kilometers) for TV, communication, telescope, long distance location, tourism, high placed windmills (energy), illumination and entertainments. The author developed theory of AB-Dome, made estimation, computation and computed a typical project.

His idea is a thin dome covering a city with that is a very transparent film 2 (Fig.1). The film has thickness 0.05 – 0.3 mm. One is located at high altitude (5 — 20 km). The film is supported at this altitude by a small additional air pressure produced by ground ventilators. That is connected to Earth’s ground by managed cables 3. The film may have a controlled transparency option. The system can have the second lower film 6 with controlled reflectivity, a further option.

The offered protection defends in the following way. The smallest space warhead has a
minimum cross-section area 1 m2 and a huge speed 3 – 5 km/s. The warhead gets a blow and overload from film (mass about 0.5 kg). This overload is 500 – 1500g and destroys the warhead (see computation below). Warhead also gets an overpowering blow from 2 −5 (every mass is 0.5 — 1 kg) of the strong stones. Relative (about warhead) kinetic energy of every stone is about 8 millions of Joules! (It is in 2–3 more than energy of 1 kg explosive!). The film destroys the high speed warhead (aircraft, bomber, wing missile) especially if the film will be armored by stone.

Our dome cover (film) has 2 layers: top transparant layer 2, located at a maximum altitude (up 5 −20 km), and lower transparant layer 4 having control reflectivity, located at altitude of 1–3 km (option). Upper transparant cover has thickness about 0.05 – 0.3 mm and supports the protection strong stones (rebbles) 8. The stones have a mass 0.2 – 1 kg and locate the step about 0.5 m.

If we want to control temperature in city, the top film must have some layers: transparant dielectric layer, conducting layer (about 1 — 3 microns), liquid crystal layer (about 10 — 100 microns), conducting layer (for example, SnO2), and transparant dielectric layer. Common thickness is 0.05 — 0.5 mm. Control voltage is 5 — 10 V. This film may be produced by industry relatively cheaply.

If some level of light control is needed materials can be incorporated to control transparency. Also, some transparent solar cells can be used to gather wide area solar power.


As you see the 10 kt bomb exploded at altitude 10 km decreases the air blast effect about in 1000
times and thermal radiation effect without the second cover film in 500 times, with the second reflected film about 5000 times. The hydrogen 100kt bomb exploded at altitude 10 km decreases the air blast effect about in 10 times and thermal radiation effect without the second cover film in 20 times, with the second reflected film about 200 times. Only power 1000kt thermonuclear (hydrogen) bomb can damage city. But this damage will be in 10 times less from air blast and in 10 times less from thermal radiation. If the film located at altitude 15 km, the
damage will be in 85 times less from the air blast and in 65 times less from the thermal radiation.
For protection from super thermonuclear (hydrogen) bomb we need in higher dome altitudes (20−30 km and more). We can cover by AB-Dome the important large region and full country.

Because the Dome is light weight it could be to stay in place even with very large holes. Multiple shells of domes could still be made for more protection.

Better climate inside a dome can make for more productive farming.

AB-Dome is cheaper in hundreds times then current anti-rocket systems.
2. AB-Dome does not need in high technology and can build by poor country.
3. It is easy for building.
4. Dome is used in peacetime; it creates the fine climate (weather) into Dome.
5. AB-Dome protects from nuclear, chemical, biological weapon.
6. Dome produces the autonomous existence of the city population after total World nuclear war
and total confinement (infection) all planet and its atmosphere.
7. Dome may be used for high region TV, for communication, for long distance locator, for
astronomy (telescope).
8. Dome may be used for high altitude tourism.
9. Dome may be used for the high altitude windmills (getting of cheap renewable wind energy).
10. Dome may be used for a night illumination and entertainment

Disruptions from small recessions to extinctions

Cross posted from Next big future by Brian Wang, Lifeboat foundation director of Research

I am presenting disruption events for humans and also for biospheres and planets and where I can correlating them with historical frequency and scale.

There has been previous work on categorizing and classifying extinction events. There is Bostroms paper and there is also the work by Jamais Cascio and Michael Anissimov on classification and identifying risks (presented below).

A recent article discusses the inevtiable “end of societies” (it refers to civilizations but it seems to be referring more to things like the end of the roman empire, which still ends up later with Italy, Austria Hungary etc… emerging)

The theories around complexity seem me that to be that core developments along connected S curves of technology and societal processes cap out (around key areas of energy, transportation, governing efficiency, agriculture, production) and then a society falls back (soft or hard dark age, reconstitutes and starts back up again).

Here is a wider range of disruption. Which can also be correlated to frequency that they have occurred historically.

High growth drop to Low growth (short business cycles, every few years)
Recession (soft or deep) Every five to fifteen years.
Depressions (50−100 years, can be more frequent)

List of recessions for the USA (includes depressions)

Differences recession/depression

Good rule of thumb for determining the difference between a recession and a depression is to look at the changes in GNP. A depression is any economic downturn where real GDP declines by more than 10 percent. A recession is an economic downturn that is less severe. By this yardstick, the last depression in the United States was from May 1937 to June 1938, where real GDP declined by 18.2 percent. Great Depression of the 1930s can be seen as two separate events: an incredibly severe depression lasting from August 1929 to March 1933 where real GDP declined by almost 33 percent, a period of recovery, then another less severe depression of 1937–38. (Depressions every 50–100 years. Were more frequent in the past).

Dark age (period of societal collapse, soft/light or regular)
I would say the difference between a long recession and a dark age has to do with breakdown of societal order and some level of population decline / dieback, loss of knowledge/education breakdown. (Once per thousand years.)

I would say that a soft dark age is also something like what China had from the 1400’s to 1970.
Basically a series of really bad societal choices. Maybe something between depressions and dark age or something that does not categorize as neatly but an underperformance by twenty times versus competing groups. Perhaps there should be some kind of societal disorder, levels and categories of major society wide screw ups — historic level mistakes. The Chinese experience I think was triggered by the renunciation of the ocean going fleet, outside ideas and tech, and a lot of other follow on screw ups.

Plagues played a part in weakening the Roman and Han empires.

Societal collapse talk which includes Toynbee analysis.

Toynbee argues that the breakdown of civilizations is not caused by loss of control over the environment, over the human environment, or attacks from outside. Rather, it comes from the deterioration of the “Creative Minority,” which eventually ceases to be creative and degenerates into merely a “Dominant Minority” (who forces the majority to obey without meriting obedience). He argues that creative minorities deteriorate due to a worship of their “former self,” by which they become prideful, and fail to adequately address the next challenge they face.

My take is that the Enlightenment would strengthened with a larger creative majority, where everyone has a stake and capability to creatively advance society. I have an article about who the elite are now.

Many now argue about how dark the dark ages were not as completely bad as commonly believed.
The dark ages is also called the Middle Ages

Population during the middle ages

Between dark age/social collapse and extinction. There are levels of decimation/devastation. (use orders of magnitude 90+%, 99%, 99.9%, 99.99%)

Level 1 decimation = 90% population loss
Level 2 decimation = 99% population loss
Level 3 decimation = 99.9% population loss

Level 9 population loss (would pretty much be extinction for current human civilization). Only 6–7 people left or less which would not be a viable population.

Can be regional or global, some number of species (for decimation)

Categorizations of Extinctions, end of world categories

Can be regional or global, some number of species (for extinctions)

== The Mass extinction events have occurred in the past (to other species. For each species there can only be one extinction event). Dinosaurs, and many others.

Unfortunately Michael’s accelerating future blog is having some issues so here is a cached link.

Michael was identifying manmade risks
The Easier-to-Explain Existential Risks (remember an existential risk
is something that can set humanity way back, not necessarily killing
everyone):

1. neoviruses
2. neobacteria
3. cybernetic biota
4. Drexlerian nanoweapons

The hardest to explain is probably #4. My proposal here is that, if
someone has never heard of the concept of existential risk, it’s
easier to focus on these first four before even daring to mention the
latter ones. But here they are anyway:

5. runaway self-replicating machines (“grey goo” not recommended
because this is too narrow of a term)
6. destructive takeoff initiated by intelligence-amplified human
7. destructive takeoff initiated by mind upload
8. destructive takeoff initiated by artificial intelligence

Another classification scheme: the eschatological taxonomy by Jamais
Cascio on Open the Future. His classification scheme has seven
categories, one with two sub-categories. These are:

0:Regional Catastrophe (examples: moderate-case global warming,
minor asteroid impact, local thermonuclear war)
1: Human Die-Back (examples: extreme-case global warming,
moderate asteroid impact, global thermonuclear war)
2: Civilization Extinction (examples: worst-case global warming,
significant asteroid impact, early-era molecular nanotech warfare)
3a: Human Extinction-Engineered (examples: targeted nano-plague,
engineered sterility absent radical life extension)
3b: Human Extinction-Natural (examples: major asteroid impact,
methane clathrates melt)
4: Biosphere Extinction (examples: massive asteroid impact,
“iceball Earth” reemergence, late-era molecular nanotech warfare)
5: Planetary Extinction (examples: dwarf-planet-scale asteroid
impact, nearby gamma-ray burst)
X: Planetary Elimination (example: post-Singularity beings
disassemble planet to make computronium)

A couple of interesting posts about historical threats to civilization and life by Howard Bloom.

Natural climate shifts and from space (not asteroids but interstellar gases).

Humans are not the most successful life, bacteria is the most successful. Bacteria has survived for 3.85 billion years. Humans for 100,000 years. All other kinds of life lasted no more than 160 million years. [Other species have only managed to hang in there for anywhere from 1.6 million years to 160 million. We humans are one of the shortest-lived natural experiments around. We’ve been here in one form or another for a paltry two and a half million years.] If your numbers are not big enough and you are not diverse enough then something in nature eventually wipes you out.

Following the bacteria survival model could mean using transhumanism as a survival strategy. Creating more diversity to allow for better survival. Humans adapted to living under the sea, deep in the earth, in various niches in space, more radiation resistance,non-biological forms etc… It would also mean spreading into space (panspermia). Individually using technology we could become very successful at life extension, but it will take more than that for a good plan for human (civilization, society, species) long term survival planning.

Other periodic challenges:
142 mass extinctions, 80 glaciations in the last two million years, a planet that may have once been a frozen iceball, and a klatch of global warmings in which the temperature has soared by 18 degrees in ten years or less.

In the last 120,000 years there were 20 interludes in which the temperature of the planet shot up 10 to 18 degrees within a decade. Until just 10,000 years ago, the Gulf Stream shifted its route every 1,500 years or so. This would melt mega-islands of ice, put out our coastal cities beneath the surface of the sea, and strip our farmlands of the conditions they need to produce the food that feeds us.

The solar system has a 240-million-year-long-orbit around the center of our galaxy, an orbit that takes us through interstellar gas clusters called local fluff, interstellar clusters that strip our planet of its protective heliosphere, interstellar clusters that bombard the earth with cosmic radiation and interstellar clusters that trigger giant climate change.

Safeguarding Humanity

I was born into a world in which no individual or group claimed to own the mission embodied in the Lifeboat Foundation’s two-word motto. Government agencies, charitable organizations, universities, hospitals, religious institutions — all might have laid claim to some peace of the puzzle. But safeguarding humanity? That was out of everyone’s scope. It would have been a plausible motto only for comic-book organizations such as the Justice League or the Guardians of the Universe.

Take the United Nations, conceived in the midst of the Second World War and brought into its own after the war’s conclusion. The UN Charter states that the United Nations exists:

  • to save succeeding generations from the scourge of war, which twice in our lifetime has brought untold sorrow to mankind, and
  • to reaffirm faith in fundamental human rights, in the dignity and worth of the human person, in the equal rights of men and women and of nations large and small, and
  • to establish conditions under which justice and respect for the obligations arising from treaties and other sources of international law can be maintained, and
  • to promote social progress and better standards of life in larger freedom

All of these are noble, and incredibly important, aims. But even the United Nations manages to name only one existential risk, warfare, which it is pledged to help prevent. Anyone reading this can probably cite a half dozen more.

It is both exciting and daunting to live in an age in which a group like the Lifeboat Foundation can exist outside of the realm of fantasy. It’s exciting because our awareness of possibility is so much greater than it was even a generation or two ago. And it is daunting for exactly the same reason. We can envision plausible triumphs for humanity that really do transcend our wildest dreams, or at least our most glorious fantasies as articulated a few decades ago. Likewise, that worst of all possible outcomes — the sudden and utter disappearance of our civilization, or of our species, or of life itself — now presents itself as the end result of not just one possible calamity, but of many.

I’ve spent the last few years writing about many of those plausible triumphs, while paying less attention to the possible calamities. But I’m not sure that this is a clear-cut dichotomy. Pursuing the former may ultimately provide us with the tools and resources we will need to contend with the latter. So my own personal motto becomes something of a double-edged sword. I encourage everyone to strive to “live to see it.” But maybe we also need to figure out how we can see it…to live.

With that in mind, perhaps “safeguarding humanity” takes on a double meaning, too. We must find a way for humanity to survive in the face of these very real threats. Moreover, we must find a way for humanity — the values, the accomplishments, the sense of purpose which has defined the entire human experience — to survive. And that may be the most audacious mission statement of all.

Stephen Gordon and I will be interviewing the Lifeboat Foundation’s International Spokesperson Philippe Van Nedervelde on our podcast, FastForward Radio on Feb 17, 2008 at 7:00 PM Pacific / 10:00 PM Eastern. We’ll be talking about risks and the role of Lifeboat in helping to mitigate against them.