Toggle light / dark theme

Call them the Firstborn. Though they were not remotely human, they were flesh and blood, and when they looked out across the deeps of space, they felt awe, and wonder— and loneliness. As soon as they possessed the power, they began to seek for fellowship among the stars.

In their explorations, they encountered life in many forms, and watched the workings of evolution on a thousand worlds. They saw how often the first faint sparks of intelligence flickered and died in the cosmic night.

And because, in all the Galaxy, they had found nothing more precious than Mind, they encouraged its dawning everywhere. They became farmers in the fields of stars; they sowed, and sometimes they reaped.

And sometimes, dispassionately, they had to weed.

The great dinosaurs had long since passed away, their morning promise annihilated by a random hammerblow from space, when the survey ship entered the Solar System after a voyage that had already lasted a thousand years. It swept past the frozen outer planets, paused briefly above the deserts of dying Mars, and presently looked down on Earth.

Spread out beneath them, the explorers saw a world swarming with life. For years they studied, collected, catalogued. When they had learned all that they could, they began to modify. They tinkered with the destiny of many species, on land and in the seas. But which of their experiments would bear fruit, they could not know for at least a million years.

Chromosome-level engineering is a completely different beast: it’s like rearranging multiple paragraphs or shifting complete sections of an article and simultaneously hoping the changes add capabilities that can be passed onto the next generation.

Reprogramming life isn’t easy. Xiao Zhu’s DNA makeup is built from genetic letters already optimized by eons of evolutionary pressure. It’s no surprise that tinkering with an established genomic book often results in life that’s not viable. So far, only yeast have survived the rejiggering of their chromosomes.

The new study, published in Science, made the technology possible for mice. The team artificially fused together chunks from mice chromosomes. One fused pair made from chromosomes four and five was able to support embryos that developed into healthy—if somewhat strangely behaved—mice. Remarkably, even with this tectonic shift to their normal genetics, the mice could reproduce and pass on their engineered genetic quirks to a second generation of offspring.

Modern medicine forces bacteria to adapt: in response to antibiotic treatment, they either increase their fitness or die out. Whether a bacterial population survives or not depends on a combination of its genetics and environment—the antibiotic concentration—at a given moment. Now Suman Das of the University of Cologne, Germany, and colleagues simulate the effect on adaptation of an environment that is constantly changing [1]. Using a model that describes how slow-moving disordered systems respond to external forces, the researchers find that microbe evolution in changing drug concentrations exhibits hysteresis and memory formation. They use analytical methods and numerical simulations to connect these statistical physics concepts to bacterial drug resistance.

The team’s model examines changes in a bacterial population’s genetic sequences. By combining data on bacterial growth rates with statistical tools, the researchers describe how the bacterial genome can store information about both present and past drug concentrations. Their simulations start with a genetic sequence optimized for a certain antibiotic concentration. They then track how the sequence mutates when the concentration shifts to another value. When the concentration increases and then reduces to a lower value, the genetic route taken on the downward path depends on the changes on the upward path. How different the mutation routes are depends on the rate of concentration change.

The researchers find that this behavior mimics that of disordered systems driven by external forces, such as ferromagnetic materials subjected to magnetic fields or amorphous materials subjected to a shearing force. They say that while their approach focuses on the evolution of drug resistance, the framework can be adapted to other problems in evolutionary biology that involve changing environmental parameters.

They say lonsdaleite could be used to fortify industrial tools like drill bits and saw blades — AND teach us about the evolution of earth.

AYESHA RASCOE, HOST:

Move over, diamonds. There’s stronger bling in town. Meet lonsdaleite — for years just a theory. Now CNN reports that scientists have confirmed its existence on Earth. While diamonds and lonsdaleite are both made of carbon — get ready for this — the former has a cubic atomic structure, and the latter has a hexagonal structure. So what’s the big difference? That hexagonal structure makes the stone 58% stronger than regular diamonds. Lonsdaleite was found in a meteorite that scientists say came from a dwarf planet that was billions of years old. An asteroid crashed into that planet, releasing pressure that caused the stone to form. The hardness of lonsdaleite could be useful in making super durable tools for industrial sites. But scientists also say this discovery can teach us about the interactions of the universe and ultimately how Earth evolved as a planet.

If smoke indicates a fire, nitric oxide signals inflammation. The chemical mediator promotes inflammation, but researchers suspect it can do its job too well after anterior cruciate ligament (ACL) ruptures and related injuries and initiate early onset osteoarthritis. Typically, the degenerative disease is only diagnosed after progressive symptoms, but it potentially could be identified much earlier through nitric oxide monitoring, according to Huanyu “Larry” Cheng, James E. Henderson Jr. Memorial Associate Professor of Engineering Science and Mechanics at Penn State.

Cheng and his student, Shangbin Liu, who earned a master’s degree in engineering science and mechanics at Penn State this year, collaborated with researchers based in China to develop a flexible biosensor capable of continuous and wireless nitric detection in rabbits. They published their approach in the Proceedings of the National Academy of Sciences.

“Real-time assessment of biomarkers associated with inflammation, such as nitric oxide in the joint cavity, could indicate pathological evolution at the initial development of osteoarthritis, providing essential information to optimize therapies following traumatic knee injury,” Cheng said.

In nature, evolutionary chromosomal changes may take a million years, but scientists have recently reported a novel technique for programmable chromosome fusion that has successfully created mice with genetic changes that occur on a million-year evolutionary scale in the laboratory. The findings might shed light on how chromosomal rearrangements – the neat bundles of structured genes provided in equal numbers by each parent, which align and trade or mix characteristics to produce offspring – impact evolution.

In a study published in the journal Science, the researchers show that chromosome level engineering is possible in mammals. They successfully created a laboratory house mouse with a novel and sustainable karyotype, offering crucial insight into how chromosome rearrangements may influence evolution.

“The laboratory house mouse has maintained a standard 40-chromosome karyotype — or the full picture of an organism’s chromosomes — after more than 100 years of artificial breeding,” said co-first author Li Zhikun, researcher in the Chinese Academy of Sciences (CAS) Institute of Zoology and the State Key Laboratory of Stem Cell and Reproductive Biology. “Over longer time scales, however, karyotype changes caused by chromosome rearrangements are common. Rodents have 3.2 to 3.5 rearrangements per million years, whereas primates have 1.6.”

The biotech platform that is leveraging one of the cornerstones of evolution – mitochondria.

Mitochondria play a crucial role in the aging process, activating factors and metabolic pathways involved in longevity. Their dysfunction impacts on both lifespan and healthspan, and whilst they have been identified as disease targets for some time, mitochondria have proven difficult to treat.

The founders of cellvie wondered if it were possible, as they put it, to leverage one of the cornerstones of evolution – to replace and augment damaged mitochondria. And so, the concept of Therapeutic Mitochondria Transplantation was born. TMT holds the potential of sustainably affecting mitochondria function, and reinvigorating or amplifying the cellular energy metabolism – and having raised $5 million in Kizoo-led seed funding, cellvie is on the way to turning that possibility into a reality.

Dr Alex Schueller, Cellvie’s CEO, will be speaking at Berlin’s Rejuvenation Startup Summit (14−15 October 2022), as part of an all-star line-up that includes Michael Greve, Eric Verdin, Brian Kennedy, Michael Sidler, Christian Angermayer and our own Phil Newman. Hosted by the Forever Healthy Foundation, this vibrant networking event aims to accelerate the development of the rejuvenation biotech industry.

Visit Longevity. Technology — https://bit.ly/3PwtH8Y

Follow Longevity. Technology on:

Researchers from the Max Planck Institute for Polymer Research have developed a drug that disrupts the adaptability of cancer cells!

Abstract: in situ assembly of platinum(ii)-metallopeptide nanostructures disrupts energy homeostasis and cellular metabolism.

https://pubs.acs.org/doi/10.1021/jacs.2c03215

Max Planck Institute for Polymer Research Press Release: https://www.mpip-mainz.mpg.de/en/press/pr-2022-09

#cancer.
#cancertreatment.
#cancersupport.
#cells.
#cancertreatment.
#chemotherapy.
#radiationtherapy.
#evolution.
#oncology.
#oncologist.
#science

About 99 percent of human genes are shared with chimpanzees. Only the small remainder sets us apart. However, we have one important difference: The brain of humans is three times as big as the chimpanzee brain.

During evolution our genome must have changed in order to trigger such brain growth. Wieland Huttner, Director and Research Group Leader a the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), and his team identified for the first time a gene that is only present in humans and contributes to the reproduction of basal brain stem cells, triggering a folding of the neocortex. The researchers isolated different subpopulations of stem cells and precisely identified, which are active in which cell type. In doing so, they noticed the gene ARHGAP11B: it is only found in humans and in our closest relatives, the Neanderthals and Denisova-Humans, but not in chimpanzees. This gene manages to trigger brain stem cells to form a bigger pool of stem cells. In that way, during brain development more neurons can arise and the cerebrum can expand. The cerebrum is responsible for cognitive functions like speaking and thinking.

Wieland Huttner’s researchers developed a method that isolates and identifies special subpopulations of brain stem cells from the developing human cerebrum. No one has managed to do this so far. The scientists first isolated different stem and progenitor cell types from fetal mice and human cerebrum tissue. In contrast to the big and folded human brain, the brain of mice is small and smooth. After the isolation, the researchers compared the genes that are active in the various cell types and were able to identify 56 genes that are only present in humans and which play a role in . “We noticed that the gene ARHGAP11B is especially active in basal brain stem cells. These cells are really important for the expansion of the neocortex during evolution,” says Marta Florio, PhD student in Wieland Huttner’s lab, who carried out the main part of the study.

The neocortex is the part of the brain that enables us to speak, dream, or think. The underlying mechanism that led to the expansion of this brain region during evolution, however, is not yet understood. A research team headed by Wieland Huttner, director at the Max Planck Institute of Molecular Cell Biology and Genetics, now reports an important finding that paves the way for further research on brain evolution: The researchers analyzed the gyrencephaly index, indicating the degree of cortical folding, of 100 mammalian brains and identified a threshold value that separates mammalian species into two distinct groups: Those above the threshold have highly folded brains, whereas those below it have only slightly folded or unfolded brains. The research team also found that differences in cortical folding did not evolve linearly across species.

The Dresden researchers examined brain sections from more than 100 different with regard to the gyrencephaly index, which indicates the degree of folding of the neocortex. The data indicate that a highly folded neocortex is ancestral – the first mammals that appeared more than 200 million years ago had folded brains. Like brain size, the folding of the brain, too, has increased and decreased along the various mammalian lineages. Life-history traits seem to influence this: For instance, mammals with slightly folded or unfolded brains live in rather small social groups in narrow habitats, whereas those with highly folded brains form rather large social groups spreading across wide habitats.

A threshold value of the folding index at 1.5 separates mammalian species into two distinct groups: Dolphins and foxes, for example, are above this threshold value – their brains are highly folded and consist of several billion neurons. This is so because basal progenitors capable of symmetric proliferative divisions are present in the neurogenic program of these animals. In contrast, basal progenitors in mice and manatees lack this proliferative capacity and thus produce less neurons and less folded or unfolded brains.