Toggle light / dark theme

The authors present a high-resolution palaeomagnetic record for a Late Cretaceous limestone in Italy. They claim that their record robustly shows a ~12° true polar wander oscillation between 86 and 78 Ma, with the greatest excursion at 84–82 Ma.


The authors propose a new framework, deep evolutionary reinforcement learning, evolves agents with diverse morphologies to learn hard locomotion and manipulation tasks in complex environments, and reveals insights into relations between environmental physics, embodied intelligence, and the evolution of rapid learning.

It’s Time to welcome our Space Brothers.


Is there intelligent life elsewhere in the universe? It’s a question that has been debated for centuries, if not millenia. But it is only recently that we’ve had an actual chance of finding out, with initiatives such as Seti (Search for Extraterrestrial Intelligence) using radio telescopes to actively listen for radio messages from alien civilisations.

What should we expect to detect if these searches succeed? My suspicion is that it is very unlikely to be little green men—something I speculated about at a talk at a Breakthrough Listen (a Seti project) conference.

Suppose there are other planets where life began and that it followed something like a Darwinian evolution (which needen’t be the case). Even then, it’s highly unlikely that the progression of and technology would happen at exactly the same pace as on Earth. If it lagged significantly behind, then that planet would plainly reveal no evidence of extraterrestrial life to our . But around a star older than the Sun, life could have had a head start of a billion years or more.

Live human brain tissue — generously donated by brain surgery patients with epilepsy or tumors — is yielding incredible #neuroscience insights. A study on cells… See More.


As part of an international effort to map cell types in the brain, scientists identified increased diversity of neurons in regions of the human brain that expanded during our evolution.

On Oct. 16 2021, our Lucy spacecraft will begin its journey to visit a record-breaking number of asteroids. The 12-year mission starts from NASA’s Kennedy Space Center where it’ll launch aboard a United Launch Alliance Atlas V 401 rocket. From there, Lucy will be the first spacecraft to visit a record number of destinations in independent orbits around the sun – one main belt asteroid and seven of Jupiter’s Trojan Asteroids. Like the mission’s namesake – the fossilized human ancestor, “Lucy,” whose skeleton provided unique insight into humanity’s evolution – Lucy will revolutionize our knowledge of planetary origins and the formation of the solar system.

Lucy’s first launch attempt in its 21-day launch window is scheduled for 5:34 a.m. EDT on Oct. 16. Launch coverage starts at 5 a.m. EDT on NASA TV, the NASA app, and @NASA social media. Be a part of Lucy’s historic launch day by using the hashtag #LucyMission!

Producer/Editor: Lacey Young.
Music: Universal Production Music

We humans like to take our time when it comes to growing up. Among the great apes, only chimpanzees come close to stretching out the years between key developmental milestones.

But even chimps are ready to get crunching with a full set of chompers by the time they’re sexually mature. Homo sapiens don’t grow their last few teeth until they’re nearly out of the teenage years.

This mystery of the molars is a tricky one to solve, in spite of their emergence playing such a critical role in tracking shifts in our evolution. But researchers from the University of Arizona in the US now think they might have cracked it.

Dr. Hans Recknagel, who led the field and genome research during his Ph.D. and postdoctoral research, said: This was fascinating research, not least because in this species of lizard egg-laying populations still occur and interbreed with live-bearing ones.


Scientists studying the evolution of birth in lizards, from egg-laying to live births, have pinpointed the evolutionary genes from which the species is evolving to ‘build’ a new mode of reproduction.

The study—led by the University of Glasgow and published in Nature Ecology and Evolution —found that a significantly similar amount of the same genes involved in the pregnancy of lizards were shared with other mammals and live-bearing vertebrates.

Evolving from egg-laying to live birth—also known as viviparity—is a major evolutionary step; however, it is almost impossible to study the genes that lead to such major changes because when animals have evolved live-birth it was usually in the distant past.

Remember the philosophical argument our universe is a simulation? Well, a team of astrophysicists say they’ve created the biggest simulated universe yet. But you won’t find any virtual beings in it—or even planets or stars.

The simulation is 9.6 billion light-years to a side, so its smallest structures are still enormous (the size of small galaxies). The model’s 2.1 trillion particles simulate the dark matter glue holding the universe together.

Named Uchuu, or Japanese for “outer space,” the simulation covers some 13.8 billion years and will help scientists study how dark matter has driven cosmic evolution since the Big Bang.

University of Kentucky College of Medicine researchers were part of a new study that gives insight into how limb development evolved in vertebrates.

The findings, published in Current Biology Oct. 4 identify a gene that plays a central role in the evolution of limb development in vertebrates. By manipulating this gene in mice, researchers were able to activate an ancestral form of limb development seen in early tetrapods (four-legged vertebrates).

In the limbs of all tetrapods, the bones on the hands and feet on the outside edge form first, known as postaxial development. The study focuses on , which are the only exception to this rule: their limb bones develop preaxially, or from the inside edge; the thumb before pinky.

Called “Trojans” after characters from Greek mythology, most of Lucy’s target asteroids are left over from the formation of the solar system. These Trojans circle the Sun in two swarms: one that precedes and one that follows Jupiter in its orbit of the Sun. Lucy will be the first spacecraft to visit the Trojans, and the first to examine so many independent solar system targets, each in its own orbit of the Sun.

Lucy gets its name from the fossilized human ancestor, called “Lucy” by her discoverers, whose skeleton provided unique insight into human evolution. Likewise, the Lucy mission will revolutionize our knowledge of planetary origins and the formation of the solar system.

Studying Jupiter’s Trojan asteroids up close would help scientists hone their theories on how our solar system’s planets formed 4.5 billion years ago and why they ended up in their current configuration. “It’s almost like we’re traveling back in time,” said aerospace engineer Jacob Englander, who helped design Lucy’s trajectory while working at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.