Toggle light / dark theme

Darwin applied the theory of evolution to life on earth, but not to other massively complex systems like planets, stars, atoms and minerals. Now, an interdisciplinary group of researchers has identified a missing aspect of that theory that applies to essentially everything.

Their paper, “On the roles of function and selection in evolving systems,” published Oct. 16 in the Proceedings of the National Academy of Sciences, describes “a missing law of nature” that recognizes for the first time an important norm within the natural world’s workings. The new law states that complex natural systems evolve to states of greater patterning, diversity and complexity.

“This was a true collaboration between scientists and philosophers to address one of the most profound mysteries of the cosmos: why do complex systems, including life, evolve toward greater functional information over time?” said co-author Jonathan Lunine, the David C. Duncan Professor in the Physical Sciences and chair of astronomy in the College of Arts and Sciences.

Over the past few decades, it has become quite obvious that humans are not the only living organisms with intelligence.

The story of intelligence you are about to experience goes back 13.8 billion years, back to the moment the universe was born: the Big Bang. It’s a story of time and space, matter and energy. It is a story of unfolding, It’s the story of how the very nature of the physical universe from its very inception led to the universe getting to know itself and eventually, to reflect.

Complexity, Evolution, and Intelligence is comprised of five parts, each corresponding to a movement in Dan Forrest’s “Requiem For The Living.” This composition was performed August 2, 2013 in Raleigh, NC by Bel Canto, conducted by Dr. Bill Young.

The authors evolved antibiotic-resistant Helicobacter pylori in the absence of antibiotics and presence of DNA from antibiotic-sensitive strains. Horizontal gene transfer mediated the molecular reverse evolution of the antibiotic-resistance gene to the antibiotic-sensitive allele, and the authors used theoretical modelling to determine the evolutionary conditions that promote reverse evolution.

A new study reveals that magnetic fields are common in star systems with large blue stars, challenging prior beliefs and providing insights into the evolution and explosive nature of these massive stars.

Astronomers from the Leibniz Institute for Astrophysics Potsdam (AIP), the European Southern Observatory (ESO), and the MIT Kavli Institute and Department of Physics have discovered that magnetic fields in multiple star systems with at least one giant, hot blue star, are much more common than previously thought by scientists. The results significantly improve the understanding of massive stars and their role as progenitors of supernova explosions.

Characteristics of O-type Stars.

A new paper published in Frontiers in Psychology: Performance Science led by Andy Parra-Martinez at the University of Arkansas “describes the general status, trends, and evolution of research on talent identification across multiple fields globally over the last 80 years,” by drawing from the Scopus and Web of Science databases and conducting a bibliometric analysis of 2,502 documents.

Bibliometric analysis is a way of understanding the structure and citation patterns of research around a given topic, in this case, talent identification research.

Talent identification research is concentrated in business, sports, and education

Talent identification (TI) research is “concentrated in the fields of management, business, and leadership (~37%), sports and sports science (~20%), and education, psychology, and STEM (~23%). Whereas research in management and sports science has occurred independently, research in psychology and education has created a bridge for the pollination of ideas across fields.”