Toggle light / dark theme

Summary: New research reveals the cerebellum’s significant role in the evolution of human cognitive functions. The study mapped the genetic development of cerebellar cells in humans, mice, and opossums, uncovering both ancestral and unique cellular characteristics.

Key findings include the increased proportion of specific Purkinje cells in humans, potentially linked to higher cognitive functions, and the identification of over 1,000 genes with varying activity profiles across species, some related to neurodevelopmental disorders.

The European Space Agency (ESA) has a number of missions ongoing to discover and study exoplanets, which are planets outside of our solar system.

One of those missions, Cheops (CHaracterising ExOPlanet Satellite), has uncovered a rare star system that lies around 100 light-years away.

It’s an important find because it can tell us about the formation and evolution of the planetary system, according to ESA.

Author: Sharika Dhakappa The Big Bang is the most widely accepted theory of how the universe originated. Most physicists believe that the tremendously large universe we observe today began as a tiny, dense point. If the evolution of the universe till today were to be depicted as a movie, the Big Bang would be the beginning of it. We do not yet know what came before the Big Bang or whether that is even a meaningful question to ask. The cosmic movie would run for 13.8 billion years which is the current age of the universe as estimated by the WMAP satellite.

What is the weather like on water-rich exoplanets? This is something a recent study published in Nature Astronomy hopes to shed light on as a team of researchers conducted laboratory experiments to simulate how hazy skies might form on such exoplanets throughout the cosmos. Haze changes the way light reacts to various gases within a planet’s atmosphere, which alters what astronomers detect, as well. This study comes as the number of potential water-rich exoplanets continues to grow and holds the potential to help scientists better understand the conditions necessary for the formation and evolution of water-rich exoplanets, including how life might form and evolve on them, whether on their surfaces or in their atmospheres.

Artist illustration of water-rich exoplanets comprised of hazy atmospheres, which was the focus of this study. (Credit: Roberto Molar Candanosa/Johns Hopkins University)

“The big picture is whether there is life outside the solar system, but trying to answer that kind of question requires really detailed modeling of all different types, specifically in planets with lots of water,” said Dr. Sarah Hörst, who is an associate professor of Earth and planetary sciences at Johns Hopkins University and a co-author on the study. “This has been a huge challenge because we just don’t have the lab work to do that, so we are trying to use these new lab techniques to get more out of the data that we’re taking in with all these big fancy telescopes.”

With a gravitational field so strong that not even light can escape its grip, black holes are probably the most interesting and bizarre objects in the universe.

Due to their extreme properties, a theoretical description of these celestial bodies is impossible within the framework of Newton’s classical theory of gravity. It requires the use of general relativity, the theory proposed by Einstein in 1915, which treats gravitational fields as deformations in the fabric of space-time.

Black holes are usually formed from the collapse of massive stars during their final stage of evolution. Therefore, when a black hole is born, its mass does not exceed a few dozen solar masses.

By using a special combination of laser beams as a very fast stirrer, RIKEN physicists have created multiple vortices in a quantum photonic system and tracked their evolution. This system could be used to explore exotic new physics related to the emergence of quantum states from vortex matter. The research is published in the journal Nano Letters.

In principle, if you were to swim in a pool filled with a superfluid, a single stroke would be all you need to swim an infinite number of laps. That’s because, unlike normal fluids like water, superfluids have no resistance to motion below a certain velocity.

Superfluids also behave weirdly when stirred. “If you stir a bucket of water, you typically get just one big vortex,” explains Michael Fraser of the RIKEN Center for Emergent Matter Science. “But when you rotate a superfluid, you initially create one vortex. And when you rotate it faster, you get progressively more and more vortices of precisely the same size.”

Investigators from the laboratory of Ali Shilatifard, Ph.D., the Robert Francis Furchgott Professor and chair of Biochemistry and Molecular Genetics, have discovered a new repeat gene cluster sequence that is exclusively expressed in humans and non-human primates.

The discovery, detailed in a study published in Science Advances, is a breakthrough for biology and has wide-ranging implications for future research in , , and the study of repetitive DNA sequences, according to the authors.

“This is an unbelievable discovery of the first elongation factor that is repeated within the genome and is very primate-specific,” said Shilatifard, who is also director of the Simpson Querrey Institute for Epigenetics and a professor of Pediatrics.