Toggle light / dark theme

Asteroids are frequently associated with being large chucks of rocks and nothing else. However, a recent study published in The Planetary Science Journal could change that as a team of researchers led by the Southwest Research Institute (SwRI) have discovered water molecules on an asteroid’s surface, marking a first-of-its-kind discovery that could help scientists use asteroids to better understand the formation and evolution of the early solar system and other exoplanetary systems, as well. This is because dry asteroids typically form close to the Sun while icy asteroids form much farther out.

“Asteroids are leftovers from the planetary formation process, so their compositions vary depending on where they formed in the solar nebula,” said Dr. Anicia Arredondo, who is a SwRI Research Scientist and lead author of the study. “Of particular interest is the distribution of water on asteroids, because that can shed light on how water was delivered to Earth.”

For the study, the researchers used the FORCAST (Faint Object infraRed CAmera for the SOFIA Telescope) instrument onboard the SOFIA (Stratospheric Observatory for Infrared Astronomy) aircraft to analyze four asteroids: Iris, (11) Parthenope, (18) Melpomene, and (20) Massalia. In the end, the team discovered levels of water molecules on Iris and Massalia that are consistent with levels of water molecules that have been previously identified on the sunlit portion of the Earth’s Moon using FORCAST and SOFIA, as well. The reason the team could not conclude that Parthenope and Melpomene contained water molecules was due to the unacceptable noise levels within the data.

The Subaru Telescope has spotted the terminal ends of dark matter filaments in the Coma cluster stretching across millions of light years. This is the first time that strands of the cosmic web spanning the entire universe have been directly detected. This provides new evidence to test theories about the evolution of the universe.

In the , we are used to seeing matter gathered into round objects like planets, moons, and the sun. But , which accounts for most of the mass in the universe, is believed to exist as a web of long thin strands. But like a spider web, these strands can be hard to see, so astronomers have typically drawn conclusions based on observations of galaxies and gas stuck in the web. This is similar to how if you see a dead leaf that appears to hang in midair, you know there is a spider web that you cannot see.

A team of researchers from Yonsei University used the Subaru Telescope to look for direct signs of dark matter filaments in the Coma cluster, located 321 million away in the direction of the constellation Coma Berenices. Their paper, “Weak-lensing detection of intracluster filaments in the Coma cluster” is published in Nature Astronomy.

A study led by researchers at the Nagoya University Museum in Japan may change how we understand the cultural evolution of Homo sapiens at the time of their dispersal across Eurasia about 50,000 to 40,000 years ago. These findings challenge traditional beliefs about the timing and nature of cultural transitions during this critical period in human history.

SANTIAGO, Chile — Astronomers have traced the source of Earth’s oceans, rivers, and lakes back to a stellar nursery located 1,300 light years away. They’re describing this finding as the “missing link” in the evolution of life as we know it.

“We can now trace the origins of water in our Solar System to before the formation of the Sun,” says lead author Dr. John Tobin of the National Radio Astronomy Observatory.

The international team discovered gaseous water in a substantial planet-forming disc around the star V883 Orionis. This star, located in the Orion constellation in the southwestern sky, was studied using the ALMA (Atacama Large Millimeter/submillimeter Array) telescope in Chile. Upon examination, researchers found that the disc contained at least 1,200 times the quantity of water found in all of Earth’s oceans. This discovery could potentially aid researchers in identifying planets or moons that are most likely to harbor extraterrestrial life.

Researchers at the University of Kansas (KU) hope to better understand intricate mechanisms behind the evolution of galaxies, which travel through a “cosmic web” of different environments during their lifespans.

Gregory Rudnick, professor of physics & astronomy at KU, is leading a team to study “gas content and star-formation properties of ” that are altered depending on where they are moving through the cosmos.

“The primary objective of this project is to comprehend the impact of environmental factors on the transformation of galaxies,” Rudnick said. “In the universe, galaxies are spread in a non-uniform distribution characterized by varying densities. These galaxies aggregate into large clusters, comprising hundreds to thousands of galaxies, as well as smaller groups, consisting of tens to hundreds of galaxies.”

Scientists studying sunspots have found important clues about magnetic features in their decay that will help understand the evolution and real origin of these mysterious magnetic phenomena. The findings are published in The Astrophysical Journal.

Understanding is crucial to understanding the , the approximately 11-year periodic change that changes the sun’s energy output and the frequency and intensity of flares it sends into space that can negatively influence satellites and electrical networks on Earth. (The solar “cycle” can range from eight to 14 years in length.)

Sunspots look rather simple from a distance but are complex areas where light from the sun is trapped by twisted magnetic fields. They are temporary regions of reduced temperature that appear as dark spots on the surface of the sun, where constricted suppresses convection that brings the inner heat of the sun to the surface. A sunspot is about the size of the Earth, and they often come in pairs.

Evolutionary biologists at Johns Hopkins Medicine report they have combined PET scans of modern pigeons along with studies of dinosaur fossils to help answer an enduring question in biology: How did the brains of birds evolve to enable them to fly?

The answer, they say, appears to be an adaptive increase in the size of the cerebellum in some fossil vertebrates. The cerebellum is a brain region responsible for movement and motor control.

The research findings are published in the Jan. 31 issue of the Proceedings of the Royal Society B.

We are witnessing a professional revolution where the boundaries between man and machine slowly fade away, giving rise to innovative collaboration.

Photo by Mateusz Kitka (Pexels)

As Artificial Intelligence (AI) continues to advance by leaps and bounds, it’s impossible to overlook the profound transformations that this technological revolution is imprinting on the professions of the future. A paradigm shift is underway, redefining not only the nature of work but also how we conceptualize collaboration between humans and machines.

“The memory requirements for PRIYA simulations are so big you cannot put them on anything other than a supercomputer,” Bird said.

TACC awarded Bird a Leadership Resource Allocation on the Frontera supercomputer. Additionally, analysis computations were performed using the resources of the UC Riverside High-Performance Computer Cluster.

The PRIYA simulations on Frontera are some of the largest cosmological simulations yet made, needing over 100,000 core-hours to simulate a system of 30723 (about 29 billion) particles in a ‘box’ 120 megaparsecs on edge, or about 3.91 million light-years across. PRIYA simulations consumed over 600,000 node hours on Frontera.