Toggle light / dark theme

In a major clean energy benchmark, wind, solar, and hydro exceeded 100% of demand on California’s main grid for 30 of the past 38 days.

Stanford University professor of civil and environmental engineering Mark Z. Jacobson has been tracking California’s renewables performance, and he shares his findings on Twitter (X) when the state breaks records. Yesterday he posted:

Jacobson notes that supply exceeds demand for “0.25−6 h per day,” and that’s an important fact. The continuity lies not in renewables running the grid for the entire day but in the fact that it’s happening on a consistent daily basis, which has never been achieved before.

A small town in central Utah is set to be the home of a new underground “battery” that will store hydrogen as a clean energy source.

According to The New York Times, developers are creating two caverns as deep as the Empire State Building is tall from a geological salt formation near Delta, Utah. These caverns, which are expected to be complete next year, will be able to store hydrogen gas.

The hydrogen will be produced nearby through a process called electrolysis. This will be done using excess solar and wind power in spring and fall, when demand for energy is low. Then it can be stored until peak energy demand hits in the summer — at that time, it would be burned at a power plant as a blend of hydrogen and natural gas.

Unveiling Chiral Interface States

The chiral interface state is a conducting channel that allows electrons to travel in only one direction, preventing them from being scattered backward and causing energy-wasting electrical resistance. Researchers are working to better understand the properties of chiral interface states in real materials but visualizing their spatial characteristics has proved to be exceptionally difficult.

But now, for the first time, atomic-resolution images captured by a research team at Berkeley Lab and UC Berkeley have directly visualized a chiral interface state. The researchers also demonstrated on-demand creation of these resistance-free conducting channels in a 2D insulator.

As any surfer will tell you, waves pack a powerful punch. We’re now making strides toward harnessing the ocean’s relentless movements for energy, thanks to advancements in “blue energy” technology. In a study published in ACS Energy Letters, researchers discovered that by moving the electrode from the middle to the end of a liquid-filled tube—where the water’s impact is strongest—they significantly boosted the efficiency of wave energy collection.

The tube-shaped wave-energy harvesting device improved upon by the researchers is called a liquid-solid triboelectric nanogenerator (TENG). The TENG converts mechanical energy into electricity as water sloshes back and forth against the inside of the tube. One reason these devices aren’t yet practical for large-scale applications is their low energy output. Guozhang Dai, Kai Yin, Junliang Yan, and colleagues aimed to increase a liquid-solid TENG’s energy harvesting ability by optimizing the location of the energy-collecting electrode.

CATL has unveiled Tener, a new large scale energy storage system to compete with Tesla Megapack.

The system has almost twice the energy capacity of the Megapack, and CATL claims zero degradation after 5 years.

Tesla Megapack is the poster boy of large-scale energy storage.

The energy storage device has been used in most of the world’s largest energy storage projects, and it is expanding fast.

Notably, while other scientists have observed similar phenomena in their laboratory data, the mechanisms behind these observations remained elusive until now. Allan Johnson and his collaborators have elucidated the underlying processes, highlighting the formation of polarons and their ordering in specific directions as a key factor in reducing the energy penalty to the metallic phase. Driving the phase transition by exciting this disordered state of motion can be achieved with less energy.

Furthermore, the dynamic barrier lowering means that scientists are able to selectively reduce the required for the laser driven phase transition without increasing the probability of thermal switching, in contrast to other methods for improving the efficiency.

The results have been published in Nature Physics. The implications of this research extend beyond fundamental science, offering new avenues for precise material control and technological innovation. As the team continues to optimize the method and explore new , the potential for transformative advancements in material science and optical control remains high.