Toggle light / dark theme

For the first time, scientists have measured the early universe running in extreme slow motion, showing that time was five times slower just a billion years after the Big Bang. By studying nearly 200 quasars – hyperactive supermassive black holes at the centers of ancient galaxies – researchers have provided new evidence for Einstein’s theory of general relativity regarding an expanding universe.

The Mystery of Early Universe Time Dilation

Einstein’s general theory of relativity predicts that, as the universe expands, distant objects (and therefore the early universe) should appear to experience slower time. However, directly observing this has been challenging due to the vast distances and the faint signals coming from early cosmic phenomena. Previous research had established this dilation back to half the age of the universe using supernovae, but quasars have now pushed this further back to just a tenth of the universe’s age.

Fast radio bursts (FRBs) are short blasts of radio waves whose origins remain a mystery. A new theoretical study explores a possible source in the atmospheres around highly magnetized neutron stars called magnetars [1]. Using numerical simulations, the researchers show that magnetar atmospheres can host powerful shock waves—or “monster shocks”—that produce gigahertz-frequency emissions, consistent with FRB observations.

The first reported observation of an FRB was in 2007, and since then astronomers have collected over a thousand bursts from across the sky. They seem to be connected to compact objects—such as neutron stars or black holes—located at large distances from Earth. “We know that they are cosmological, but their origin and production mechanism remain elusive,” says Arno Vanthieghem from Sorbonne University and the Paris Observatory. He and Amir Levinson from Tel Aviv University, Israel, have explored a possible connection between FRBs and magnetically driven shocks around magnetars.

Previous work has looked at FRB-producing mechanisms around magnetars, but Vanthieghem and Levinson are the first to explore shock-induced radio emission in the inner magnetosphere—the strong-magnetic-field region surrounding a magnetar. The researchers showed that a disturbance, such as a starquake occurring on the magnetar surface, can cause a magnetic-field wave to travel outward through the charged particles in the magnetosphere. They found that this wave can be amplified into a monster shock in which charged particles reach highly relativistic speeds. These particles emit a burst of radio waves that could be seen as an FRB by a distant observer. Vanthieghem says that future observations might be able to provide evidence for this mechanism by pinpointing the location of FRB emission within a magnetar’s environment.

PRESS RELEASE — Today, the U.S. Department of Energy (DOE) announced $71 million in funding for 25 projects in high energy physics that will use the emerging technologies of quantum information science to answer fundamental questions about the universe.

This research will develop and deploy innovative solutions for scientific discovery by applying the unique capabilities and features of the quantum world to the challenges of making new discoveries in fundamental physics. Awards funded under this program will advance theories of gravity and spacetime, develop quantum sensors that can see previously undetectable signals, and build pathfinder experiments to demonstrate increased discovery reach in searches for dark matter and other new particles and phenomena.

“Quantum information science is opening up new ways for us to understand and explore the universe,” said Regina Rameika, DOE Associate Director of Science for High Energy Physics. “With these projects, we are supporting scientists in developing quantum technologies that will empower the next generation of theory and experiment in high energy physics.”

Astrophysicists have long been intrigued by the possibility of dark stars-massive celestial objects fueled not by nuclear fusion but by the enigmatic energy of dark matter. Thanks to images taken by the James Webb Space Telescope (JWST), the scientific community has perhaps also found signs of such elusive entities. Could these dark stars, which shine billions of times brighter than our sun, rewrite the story of the universe’s infancy?

Dark stars, despite the word “dark”, are hypothesized luminous sources that may have existed in the universe’s infancy. In contrast to traditional stars that work with nuclear fusion, dark stars are speculated to obtain their energy from self-annihilation of dark matter particles.

As a result, energy is released that warms the ambient hydrogen and helium, and this leads the primordial clouds to glow brightly and expand to enormous scale-some up to a million times mass of the sun. These stars may have also been born in “minihaloes”, dense pockets of dark matter in the early universe.

Quantum foam itself released gravitational waves that eventually shaped the cosmic universe.


Over billions of years, these stretched ripples grew into clumps of matter, forming the first stars and galaxies. Eventually, they created a massive network of galaxies and dark matter called the cosmic web, which spans the entire universe today.

A new study suggests that the cosmic web could have formed without relying on inflation driven by a scalar field. Instead, it proposes a novel mechanism that suggests that inflation arises from gravitational wave amplification.

Inflation is believed to have laid the foundation of everything there is out in space. However, nobody knows when it happened, why it happened, or what caused it. Plus, scientists don’t have any solid evidence to confirm whether it happened.

Meet the Dark Matter, the groundbreaking electric motor powering Koenigsegg’s new Gemera hypercar. Officially known as the Dark Matter Raxial Flux 6-phase E-motor, this revolutionary piece of technology debuted at the 2023 Goodwood Festival of Speed. Boasting an impressive 800 horsepower and 922 lb-ft of torque, while weighing just 40kg, the Dark Matter is hailed as the world’s most powerful automotive-grade electric motor. With its unique six-phase technology, it marks a major leap forward in electric vehicle engineering, surpassing the three-phase motors commonly used in most electric vehicles today.

The Dark Matter electric motor is considered the world’s most powerful automotive-grade motor, using a unique six-phase technology. This motor is a significant improvement over the three-phase motors commonly used in most electric vehicles today. The Dark Matter replaces the previous motor used in the Gemera, called the Quark.

Both the Quark and the Dark Matter are “raxial flux” motors, which combine features of two common types of electric motors: radial flux and axial flux. Radial flux motors offer more power but less torque, while axial flux motors are known for providing high torque but with less power. The key difference between these two designs is how the magnetic field travels through the motor. In a radial flux motor, the magnetic field path is longer, creating more power. In an axial flux motor, the magnetic field follows a shorter, more direct path, giving the motor more torque.

Researchers have pioneered the use of parallel computing on graphics cards to simulate acoustic turbulence. This type of simulation, which previously required a supercomputer, can now be performed on a standard personal computer. The discovery will make weather forecasting models more accurate while enabling the use of turbulence theory in various fields of physics, such as astrophysics, to calculate the trajectories and propagation speeds of acoustic waves in the universe. The research was published in Physical Review Letters.

Turbulence is the complex chaotic behavior of fluids, gases or nonlinear waves in various physical systems. For example, at the ocean surface can be caused by wind or wind-drift currents, while turbulence of laser radiation in optics occurs as light is scattered by lenses. Turbulence can also occur in sound waves that propagate chaotically in certain media, such as superfluid helium.

In the 1970s, Soviet scientists proposed that turbulence occurs when sound waves deviate from equilibrium and reach large amplitudes. The theory of wave turbulence applies to many other wave systems, including magnetohydrodynamic waves in the ionospheres of stars and giant planets, and perhaps even in the early universe. Until recently, however, it has been nearly impossible to predict the propagation patterns of nonlinear (i.e., chaotically moving) acoustic and other waves because of the high computational complexity involved.