Toggle light / dark theme

Scientists are challenging the existence of dark energy with a new model called “timescape,” which suggests the Universe’s expansion might be influenced by its uneven structure rather than an invisible force.

This theory could resolve ongoing cosmological debates, with upcoming satellite data playing a key role in confirming its validity.

Questioning Dark Energy’s Existence

“The Universe Expands Beyond All Bounds”

The universe expands beyond all bounds, Black holes gain mass, where wonders surround. Curvature shifts like moonlight’s gleam, Adding new mass, no matter redeemed.

A new year dawns with lessons to share, Physics reveals a truth so rare. The cosmos vast, profound, and wide, Marks 2025 with knowledge as our guide.

The first endeavor of this brand-new year, Explains black hole growth without drawing near. Expanding space, a force untamed, Curvature energy, its role proclaimed.

Based on observed and verified research: arxiv.org/abs/2302.

Through our novel gravitational field theory: dx.doi.org/10.1016/j.astropartphys.2024.

In a groundbreaking study, researchers have developed optical spring tracking to enhance signal clarity in gravitational-wave detectors, such as aLIGO.

This innovation could dramatically increase our understanding of cosmic events like black hole mergers, potentially unlocking secrets of the universe’s formation.

Revolutionary advances in gravitational wave detection.

What is the deepest level of reality? In this Quanta explainer, Vijay Balasubramanian, a physicist at the University of Pennsylvania, takes us on a journey through space-time to investigate what it’s made of, why it’s failing us, and where physics can go next.

Explore black holes, holograms, “alien algebra,” and more space-time geometry: https://www.quantamagazine.org/the-un

00:00 — The Planck length, an intro to space-time.
1:23 — Descartes and Newton investigate space and time.
2:04 — Einstein’s special relativity.
2:32 — The geometry of space-time and the manifold.
3:16 — Einstein’s general relativity: space-time in four dimensions.
3:35 — The mathematical curvature of space-time.
4:57 — Einstein’s field equation.
6:04 — Singularities: where general relativity fails.
6:50 — Quantum mechanics (amplitudes, entanglement, Schrödinger equation)
8:32 — The problem of quantum gravity.
9:38 — Applying quantum mechanics to our manifold.
10:36 — Why particle accelerators can’t test quantum gravity.
11:28 — Is there something deeper than space-time?
11:45 — Hawking and Bekenstein discover black holes have entropy.
13:54 — The holographic principle.
14:49 — AdS/CFT duality.
16:06 — Space-time may emerge from entanglement.
17:44 — The path to quantum gravity.

——-

Sir Roger Penrose, a name synonymous with genius, has tirelessly pursued the secrets of the universe with the fervour of a true renaissance seer. His intellectual contributions span a breathtaking range, from the intricate beauty of Penrose tilings to the vast expanse of cosmology, and even the enigmatic depths of human consciousness.

Apple TV+ is ringing in the New Year by offering an all-access pass to customers all around the world. Enjoy Apple TV+ for free the first weekend of 2025 (January 3 through January 5), Apple TV+ will be free on any device where Apple TV+ is available. All you need is an Apple ID to see what all the buzz is about.

Kick off 2025 by streaming Apple’s acclaimed originals, including buzzy new seasons of “Silo,” “Shrinking” and “Bad Sisters,” the twisty, riveting “Presumed Innocent,” Golden Globe nominees “Slow Horses” and “Disclaimer,” and award-winning hits like “The Morning Show” and “Ted Lasso.” Plus, catch up on global phenomenon “Severance” before its second season debut; get your mind blown by celebrated sci-fi series like “Dark Matter,” “For All Mankind” and “Foundation”; discover movies for the whole family like “Fly Me to the Moon” and “The Family Plan”; and action-packed hit features like “Wolfs” and “The Instigators.”

Tachyons, the hypothetical particles that travel faster than light, have long fascinated scientists and enthusiasts. In this video, we explore how the McGinty Equation (MEQ) serves as a groundbreaking tool in understanding these elusive particles. Delve into the world of quantum mechanics, fractal geometry, and gravity as we uncover the potential of tachyons to revolutionize science and technology. From their intriguing properties, such as imaginary mass and energy reduction at high speeds, to their implications for faster-than-light communication and interstellar exploration, this video is a journey into uncharted territories of physics.

We also discuss the quest to detect tachyons, innovative experimental methods, and the role of MEQ in guiding researchers. Could tachyons be the key to unlocking new dimensions, explaining dark matter and energy, or understanding the origins of the universe? Join us in this deep dive into the unknown and discover the potential future of tachyon research.

#Tachyons #McGintyEquation #QuantumMechanics #FractalGeometry #FasterThanLight #ImaginaryMass #QuantumPhysics #AdvancedPhysics #TachyonResearch #LightSpeedPhysics #QuantumFieldTheory #ScientificDiscovery #SpaceTime #InterstellarTravel #DarkMatter #DarkEnergy #FasterThanLightCommunication #PhysicsBreakthrough #CosmicMysteries #HypotheticalParticles

Using the Very Large Array (VLA), an international team of astronomers have observed a nearby galaxy merger known as CIZA J0107.7+5408. Results of the observational campaign, presented December 20 on the preprint server arXiv, could help us better understand the merging processes that take place between galaxy clusters.

Galaxy clusters contain up to thousands of galaxies bound together by gravity. They generally form as a result of mergers and grow by accreting sub-clusters. These processes provide an excellent opportunity to study matter in conditions that cannot be explored in laboratories on Earth. In particular, merging could help us better understand the physics of shock and seen in the diffuse intra-cluster medium, the cosmic ray acceleration in clusters, and the self-interaction properties of dark matter.

At a redshift of approximately 0.1, CIZA J0107.7+5408, or CIZA0107 for short, is a nearby, post-core passage, dissociative binary cluster merger. It is a large, roughly equal mass disturbed system consisting of two subclusters, hosting two optical density peaks, with associated but offset X-ray emission peaks.

Einstein’s theory of general relativity describes the inevitability of singularities, which are obscured by black holes according to Penrose’s cosmic censorship conjecture.

Recent studies indicate that quantum mechanics might reinforce this idea, proposing a quantum Penrose inequality that relates entropy to space-time metrics in the vicinity of black holes.

General Relativity and Singularities.