Toggle light / dark theme

For the first time, the NASA/ESA/CSA James Webb Space Telescope has detected and “weighed” a galaxy that not only existed about 600 million years after the Big Bang, but also has a mass that is similar to what our Milky Way galaxy’s mass might have been at the same stage of development.

Other galaxies Webb has detected at this period in the history of the universe are significantly more massive. Nicknamed the Firefly Sparkle, this galaxy is gleaming with star clusters—10 in all—each of which researchers examined in great detail. Their work is published in Nature.

“I didn’t think it would be possible to resolve a galaxy that existed so early in the universe into so many distinct components, let alone find that its mass is similar to our own galaxy’s when it was in the process of forming,” said Lamiya Mowla, co-lead author of the paper and an assistant professor at Wellesley College in Massachusetts. “There is so much going on inside this tiny galaxy, including so many different phases of star formation.”

There might not be a mysterious ‘dark’ force accelerating the expansion of the Universe after all. The truth could be much stranger – bubbles of space where time passes at drastically different rates.

The passage of time isn’t as constant as our experience with it suggests. Areas of higher gravity experience a slower pace of time compared with areas where gravity is weaker, a fact that could have some pretty major implications on how we compare rates of cosmic expansion according to a recently developed model called timescape cosmology.

Discrepancies in how fast time passes in different regions of the Universe could add up to billions of years, giving some places more time to expand than others. When we look at distant objects through these time-warping bubbles, it could create the illusion that the expansion of the Universe is accelerating.

Back when the Universe was new, following the Big Bang some 13.8 billion years ago, galaxies took a bit of time to assemble themselves from the surrounding primordial soup.

A new discovery right at the end of the Cosmic Dawn is challenging how long we thought that assembly took. JWST has spotted a huge, ultramassive galaxy as it appeared 12.8 billion years ago, so intricately structured that it can only belong to the most spectacular category of galaxies: the grand design spiral.

The galaxy’s name is Zhúlóng, after the Torch Dragon of Chinese myth, and its discovery has been detailed in a paper uploaded to preprint server arXiv ahead of peer review and publication.

ABSTRACT. We reanalyse the Pantheon+ supernova catalogue to compare a cosmology with non-FLRW evolution, the timescape cosmology, with the standard Lambda cold dark matter (⁠|Lambda$|CDM) cosmology. To this end, we analyse the Pantheon+ for a geometric comparison between the two models. We construct a covariance matrix to be as independent of cosmology as possible, including independence from the FLRW geometry and peculiar velocity with respect to FLRW average evolution. This framework goes far beyond most other definitions of model independence. We introduce new statistics to refine Type Ia supernova (SNe Ia) light-curve analysis. In addition to conventional galaxy correlation functions used to define the scale of statistical homogeneity we introduce empirical statistics that enables refined analysis of the distribution biases of SNe Ia light-curve parameters |beta c$| and |alpha x_1$|⁠. For lower redshifts, the Bayesian analysis highlights important features attributable to the increased number of low-redshift supernovae, the artefacts of model-dependent light-curve fitting, and the cosmic structure through which we observe supernovae. This indicates the need for cosmology-independent data reduction to conduct a stronger investigation of the emergence of statistical homogeneity and to compare alternative cosmologies in light of recent challenges to the standard model. Dark energy is generally invoked as a place-holder for new physics. For the first time, we find evidence that the timescape cosmology may provide a better overall fit than |Lambda$|CDM and that its phenomenology may help disentangle other astrophysical puzzles. Our from-first-principles reanalysis of Pantheon|$+$| supports future deeper studies between the interplay of matter and non-linear spacetime geometry in a data-driven setting.

Year 2021 face_with_colon_three


The quasi-local notion of an isolated horizon is employed to study the entropy of black holes without any particular symmetry in loop quantum gravity. The idea of characterizing the shape of a horizon by a sequence of local areas is successfully applied in the scheme to calculate the entropy by the S O(1, 1) BF boundary theory matching loop quantum gravity in the bulk. The generating function for calculating the microscopical degrees of freedom of a given isolated horizon is obtained. Numerical computations of small black holes indicate a new entropy formula containing the quantum correction related to the partition of the horizon. Further evidence shows that, for a given horizon area, the entropy decreases as a black hole deviates from the spherically symmetric one, and the entropy formula is also well suitable for big black holes.

A new study in published in Physical Review Letters analyzes the most complete set of galaxy clustering data to test the ΛCDM model, revealing discrepancies in the formation of cosmic structures in the universe, hinting at a new physics.

The ΛCDM model is the standard model of cosmology describing the universe’s evolution, expansion, and structure. It encompasses (CDM), normal matter and radiation, and the cosmological constant (Λ), which accounts for .

The model has been successful in explaining several cosmological observations, including the large-scale structure of the universe, the accelerating expansion of the universe, and the (CMB) radiation, which is the afterglow of the Big Bang.

A group of astronomers from numerous institutions have investigated a recently discovered nearby tidal disruption event known as ASASSN-22ci. They detected two luminous flares from this event. The finding was reported in a paper published Dec. 19 on the preprint server arXiv.

Tidal disruption events (TDEs) are astronomical phenomena that occur when a star passes close enough to a and is pulled apart by the black hole’s tidal forces, causing the process of disruption.

Such tidally disrupted stellar debris starts raining down on the black hole and radiation emerges from the innermost region of accreting debris, which is an indicator of the presence of a TDE. All in all, the debris stream–stream collision causes an energy dissipation, which may lead to the formation of an accretion disk.

For the first time, a framework shows Einstein’s relativity aligns with quantum physics.


Scientists have finally figured out a way to connect the dots between the macroscopic and the microscopic worlds. Their magical equation might provide us answers to questions like why black holes don’t collapse and how quantum gravity works.

Albert Einstein’s theory of general relativity has revolutionized our understanding of gravity and the universe. However, it leaves some unanswered questions, particularly about singularities and black holes.

Recent studies suggest quantum mechanics could help resolve these mysteries and offer new insights into the fundamental nature of space-time and black holes.

General relativity is a theory developed by Albert Einstein to explain how gravity works.