Menu

Blog

Archive for the ‘computing’ category: Page 489

Jun 10, 2020

IBM Director: Get Ready For Quantum Computing App Stores

Posted by in categories: computing, quantum physics, robotics/AI

Plug And Play

The underlying mechanics of a quantum computer won’t be any less difficult to comprehend under Gil’s vision of the future. But, he argues, it won’t matter because programming quantum computing software would become far more automated along the way.

“You’ll simply have to write a line of code in any programming language you work with,” Gil wrote, “and the system will match it with the circuit in the library and the right quantum computer.”

Jun 10, 2020

A route to the directional control of light–matter interactions at the nanoscale

Posted by in categories: computing, mobile phones, nanotechnology, quantum physics

Mobile phones and computers are currently responsible for up to 8% of the electricity use in the world. This figure has been doubling each past decade but nothing prevents it from skyrocketing in the future. Unless we find a way for boosting energy efficiency in information and communications technology, that is. An international team of researchers, including Ikerbasque Research Associate Alexey Nikitin (DIPC), has just published in Nature 1 a breakthrough in quantum physics that could deliver exactly that: electronics and communications technology with ultralow energy consumption.

Future information and communication technologies will rely on the manipulation of not only electrons but also of light at the nanometer-scale. Squeezing light to such a small size has been a major goal in nanophotonics for many years. Particularly strong light squeezing can be achieved with polaritons, quasiparticles resulting from the strong coupling of photons with a dipole-carrying excitation, at infrared frequencies in two-dimensional materials, such as graphene and hexagonal boron nitride. Polaritons can be found in materials consisting of two-dimensional layers bound by weak van der Waals forces, the so-called van der Waals materials. These polaritons can be tuned by electric fields or by adjusting the material thickness, leading to applications including nanolasers, tunable infrared and terahertz detectors, and molecular sensors.

But there is a major problem: even though polaritons can have long lifetimes, they have always been found to propagate along all directions (isotropic) of the material surface, thereby losing energy quite fast, which limits their application potential.

Jun 10, 2020

The Quantum App Store Is Coming

Posted by in categories: computing, quantum physics

Quantum computing is still the province of specialized programmers—but that is likely to change very quickly.

Jun 9, 2020

Rapid de novo assembly of the European eel genome from nanopore sequencing reads

Posted by in categories: biotech/medical, computing, information science

Circa 2017


We have sequenced the genome of the endangered European eel using the MinION by Oxford Nanopore, and assembled these data using a novel algorithm specifically designed for large eukaryotic genomes. For this 860 Mbp genome, the entire computational process takes two days on a single CPU. The resulting genome assembly significantly improves on a previous draft based on short reads only, both in terms of contiguity (N50 1.2 Mbp) and structural quality. This combination of affordable nanopore sequencing and light weight assembly promises to make high-quality genomic resources accessible for many non-model plants and animals.

Jun 9, 2020

Putin orders creation of national genetic database as Russia prioritizes genetic research

Posted by in categories: biotech/medical, computing, education, genetics, government

The president also ordered a boost in the education of specialists in genetics and genome sequencing and the domestic production of necessary laboratory equipment, as well as tax cuts for biomedical research. Russia will also open world-class genome research centers which will, among their immediate goals, work on the development of treatments and vaccines for Covid-19.


The future database will be one of the tools that Russia hopes to use to assume a leading position in the biomedical industry. The government sees it as crucial for keeping the country competitive on the world stage going forward.

The Kurchatov Institute, which is best known for nuclear research, has been tasked with laying the foundation for the database, choosing the storage format and making tools for search and analysis. The institute has experience in the secure handling of large amounts of sensitive data and operates a number of data centers across Russia which are used for scientific collaboration projects.

Jun 8, 2020

Physicists entangle 15 trillion hot atoms

Posted by in categories: computing, cosmology, encryption, quantum physics

Physicists set a new record by linking together a hot soup of 15 trillion atoms in a bizarre phenomenon called quantum entanglement. The finding could be a major breakthrough for creating more accurate sensors to detect ripples in space-time called gravitational waves or even the elusive dark matter thought to pervade the universe.

Entanglement, a quantum phenomena Albert Einstein famously described as “spooky action at a distance,” is a process in which two or more particles become linked and any action performed on one instantaneously affects the others regardless of how far apart they are. Entanglement lies at the heart of many emerging technologies, such as quantum computing and cryptography.

Jun 7, 2020

A system for the nonreciprocal transmission of microwave acoustic waves

Posted by in categories: computing, electronics

Acoustic waves have been found to be highly versatile and promising carriers of information between chip-based electronic devices. This characteristic is ideal for the development of a number of electronic components, including microwave filters and transducers.

In the past, some researchers have tried to build devices in which waves are transmitted between two ports in a non-symmetric way. These are known as nonreciprocal devices. These devices could be particularly promising for the manipulation and routing of phonons, quasiparticles associated with . Building nonreciprocal devices that transmit acoustic waves, however, can be highly challenging, as typically transmit waves in a linear way.

Researchers at Harvard University have recently achieved the non-reciprocal transmission of non-reciprocal acoustic waves using a nonlinear parity-time symmetric system. This system, presented in a paper published in Nature Electronics, is based on two coupled acoustic resonators placed on a lithium niobate surface.

Jun 7, 2020

Is quantum computing ready to leap into the real world?

Posted by in categories: computing, quantum physics

While tech-industry heavyweights strive for quantum supremacy, IDC’s latest research reveals the current state of quantum computing and explains why real-world applications are only a qubit away.

Jun 7, 2020

Room-temperature superconductors could revolutionize the world’s energy

Posted by in categories: computing, mobile phones

https://youtube.com/watch?v=Yi6q1j_QjSc

· 4 hrs ·

Now that they exist it certainly will change the world.

Continue reading “Room-temperature superconductors could revolutionize the world’s energy” »

Jun 6, 2020

New Microscope Is So Powerful It Can Watch Light Move

Posted by in categories: computing, nanotechnology

““This is the first time we can actually see the dynamics of light while it is trapped in nanomaterials, rather than relying on computer simulations,” Technion-Israel researcher Kangpeng Wang said in a press release.”


Scientists can now observe what they previously needed to simulate or model.