Archive for the ‘computing’ category: Page 487
Nov 5, 2016
Researchers uncover the origin of atmospheric particles
Posted by Shailesh Prasad in categories: computing, particle physics
In a study led by the University of Leeds, scientists have solved one of the most challenging and long-standing problems in atmospheric science: to understand how particles are formed in the atmosphere.
The research paper, published online today in the journal Science, details the first computer simulation of atmospheric particle formation that is based entirely on experimental data. The research was made possible thanks to a sophisticated laboratory called CLOUD, based within the research facility CERN in Switzerland.
The lead scientist on the study, Professor Ken Carslaw from the School of Earth and Environment at the University of Leeds said: “This is a major milestone in our understanding of the atmosphere. The CERN experiment is unique, and it has produced data that seemed completely out of reach just five years ago.”
Nov 5, 2016
Making energy-harvesting computers reliable
Posted by Shailesh Prasad in categories: computing, solar power, sustainability
A revolutionary and emerging class of energy-harvesting computer systems require neither a battery nor a power outlet to operate, instead operating by harvesting energy from their environment. While radio waves, solar energy, heat, and vibrations have the ability to power devices, harvested energy sources are weak leading to an “intermittent execution”, with periodic power failures and unreliable behavior.
Brandon Lucia, an assistant professor of electrical and computer engineering at Carnegie Mellon University, and his Ph.D. student Alexei Colin created the first programming language designed to build reliable software for intermittent, energy-harvesting computers. Colin will present the work at the 2016 SPLASH conference in Amsterdam, Netherlands, on November 3rd.
Continue reading “Making energy-harvesting computers reliable” »
Nov 4, 2016
New bionic eye implant connects directly to brain, allowing blind woman to see shapes & colors
Posted by Shailesh Prasad in categories: biotech/medical, computing, cyborgs, neuroscience, transhumanism
Scientists may have made a significant breakthrough in restoring human sight, as a woman who had been blind for seven years has regained the ability to see shapes and colours with a bionic eye implant.
The 30-year-old woman had a wireless visual stimulator chip inserted into her brain by University of California, Los Angeles (UCLA) surgeons in the first human test of the product. As a result, she could see colored flashes, lines, and spots when signals were sent to her brain from a computer.
Nov 3, 2016
Why “Computronium” is really “Unobtanium”
Posted by Andreas Matt in categories: computing, engineering, particle physics, robotics/AI, space
Computronium is defined by some as a substance which approaches the theoretical limit of computational power that we can achieve through engineering of the matter around us. It would mean that every atom of a piece of matter would be put to useful work doing computation. Such a system would reside at the ultimate limits of efficiency, and the smallest amount of energy possible would be wasted through the generation of heat. Computronium crops up in science fiction a lot, usually as something that advanced civilizations have created, occasionally causing conflicts due to intensive harvesting of matter from their galaxy to further their processing power. The idea is also also linked with advanced machine intelligence: A block of matter which does nothing other than compute could presumably would be incredibly sought after by any artificial intelligence looking to get the most compact and powerful brain for its money!
Nov 2, 2016
The wiring of fly brains—mapping cell-to-cell connections
Posted by Karen Hurst in categories: biotech/medical, computing, neuroscience
Biologists at Caltech have developed a new system for visualizing connections between individual cells in fly brains. The finding may ultimately lead to “wiring diagrams” of fly and other animal brains, which would help researchers understand how neurons are connected.
“To understand how the brain works we need to know how neurons are wired to each other,” says Carlos Lois, research professor in the Division of Biology and Biological Engineering at Caltech and principal investigator of the new research, which appears in the November issue of the journal Development. “This is similar to understanding how a computer works by looking at how transistors are connected.”
Animals are made up of different types of specialized cells. In order for an animal to function, the cells have to be able to communicate with each other. For example, neurons directly communicate with muscle cells so that an animal can move. In diseases such as cancer, this communication process can go awry: when tumors metastasize, they no longer “listen” to neighboring cells that tell them not to grow. Instead, the cancer cells grow uncontrollably and migrate to other parts of the body.
Continue reading “The wiring of fly brains—mapping cell-to-cell connections” »
Nov 2, 2016
New technique for creating NV-doped nanodiamonds may be boost for quantum computing
Posted by Karen Hurst in categories: computing, nanotechnology, quantum physics
Researchers at North Carolina State University have developed a new technique for creating NV-doped single-crystal nanodiamonds, only four to eight nanometers wide, which could serve as components in room-temperature quantum computing technologies. These doped nanodiamonds also hold promise for use in single-photon sensors and nontoxic, fluorescent biomarkers.
Currently, computers use binary logic, in which each binary unit — or bit — is in one of two states: 1 or 0. Quantum computing makes use of superposition and entanglement, allowing the creation of quantum bits — or qubits — which can have a vast number of possible states. Quantum computing has the potential to significantly increase computing power and speed.
A number of options have been explored for creating quantum computing systems, including the use of diamonds that have “nitrogen-vacancy” centers. That’s where this research comes in.
Nov 2, 2016
China to complete first stretch of dedicated ‘quantum’ encryption fibre network next month
Posted by Karen Hurst in categories: computing, encryption, quantum physics
Nov 2, 2016
Yale Engineers Advance Quantum Technology With Photon Control
Posted by Karen Hurst in categories: computing, engineering, quantum physics
Engineers from Yale University have developed a new technique to control the frequency of single photons.
The ability to control the frequency of single photons is crucial to realize the potential of quantum communications and quantum computing. The current methods for changing photon frequency, however, bring with them significant drawbacks.
Researchers in the lab of Hong Tang, the Llewellyn West Jones, Jr. Professor of Electrical Engineering & Physics, have developed a technique that avoids these obstacles. The results of their work are published today in Nature Photonics. Linran Fan, a Ph.D. student in Tang’s lab, is the lead author.
Continue reading “Yale Engineers Advance Quantum Technology With Photon Control” »
Nov 2, 2016
A technology that can bring dead back to life might be a reality soon
Posted by Elmar Arunov in categories: computing, nanotechnology, robotics/AI
Researchers plan to bring dead to life by freezing their brains and then resurrecting them with artificial intelligence.
Bringing the dead back to life is futuristic and final frontier of science and Humai is working on just that. Humai is a technology company based in Los Angeles and is working on a project known as “Atom & Eve” that would let human consciousness be transferred to an artificial body after their death.
The artificial intelligence company has said it can resurrect human beings within the next 30 years. The “conversational styles, [behavioural]patterns, thought processes and information about how your body functions from the inside-out” would be stored on a silicon chip through AI and nanotechnology.
Continue reading “A technology that can bring dead back to life might be a reality soon” »