Menu

Blog

Archive for the ‘computing’ category: Page 491

Jan 30, 2019

All-in-one transparent transistors

Posted by in categories: computing, solar power, sustainability

Small tweaks in component ratios generate electronically different layers from the same material to create transparent transistors.

Worldwide demand is growing for transparent conducting oxides for use in , , smart windows and semiconductor-based consumer electronics. KAUST researchers have engineered a zinc-oxide-based that displays tunable electronic properties depending on the tweaking of a new type of dopant.

Transparent electronics rely on indium tin oxide, a transparent and electrically conductive material that has an exorbitant cost due to the scarcity of indium. Zinc-oxide-based materials, such as hafnium-doped zinc-oxide materials, are expected to offer affordable, green and abundant alternatives to . However, hafnium-doped zinc-oxide materials typically require high deposition temperatures and display inadequate performance for real-life device applications.

Read more

Jan 30, 2019

New Metamaterial Transmits Light With No Energy Loss

Posted by in categories: computing, mobile phones, space

Very soon we might be able to say good riddance to the overheating laptops, phones and tablets that we deal with every day. Electrons carry information around circuits but lose energy as heat during transmission. Electrons are the best thing we have right now for computing, but in the near future we could wave goodbye to electronics and welcome photon, or light, communication that will be both faster and cooler. There are still few hurdles before we can get this technology in every home and every pocket, but one of its limitations was just solved by the development of a new metamaterial.

A metamaterial is a substance that has properties not observed in nature. In this case, the special property is its refractive index, a value that describes how light propagates through a medium. Take water or glass, for example, which cause light rays to bend as they travel through them. This is why pools always look shallower than they actually are.

The new metamaterial has a refractive index of zero, which means that the light phase in the material can travel infinitely fast. This doesn’t mean that relativity is violated by this material, though. Light has a “group velocity,” the velocity at which the wave propagates into space, and a “phase velocity,” the velocity at which the peaks of the waves move with respect to the wave.

Continue reading “New Metamaterial Transmits Light With No Energy Loss” »

Jan 30, 2019

UNM database of deceased people a national first

Posted by in categories: biotech/medical, computing

People die. All the time. From many causes, including old age, disease, accidents, murder. But researchers can learn from these deaths.

Heather Edgar, forensic anthropologist at The University of New Mexico Office of Medical Investigator (OMI) and associate professor of anthropology, is currently converting a dataset of whole body decedent CT scans into a searchable database that will be available to researchers.

The database will be stored on systems at the UNM Center for Advanced Research Computing, with the help of CARC network and storage specialist Hussein Al-Azzawi. It is being funded by a $702,000 grant from the National Institute of Justice.

Continue reading “UNM database of deceased people a national first” »

Jan 29, 2019

Ordinary cameras can now photograph out-of-sight objects

Posted by in categories: computing, electronics

Thanks to a new photo-analyzing computer program, a photographer’s line of sight no longer has to be a straight shot.

Read more

Jan 29, 2019

New quantum system could help design better spintronics

Posted by in categories: computing, particle physics, quantum physics

Researchers have created a new testing ground for quantum systems in which they can literally turn certain particle interactions on and off, potentially paving the way for advances in spintronics.

Spin transport electronics have the potential to revolutionize electronic devices as we know them, especially when it comes to computing. While standard electronics use an electron’s charge to encode information, spintronic devices rely on another intrinsic property of the electron: its spin.

Spintronics could be faster and more reliable than conventional electronics, as spin can be changed quickly and these devices use less power. However, the field is young and there are many questions researchers need to solve to improve their control of spin information. One of the most complex questions plaguing the field is how the signal carried by particles with spin, known as spin current, decays over time.

Read more

Jan 29, 2019

Quantum structure of buckyballs

Posted by in categories: computing, particle physics, quantum physics

Buckyballs! We love them.


JILA researchers have measured hundreds of individual quantum energy levels in the buckyball, a spherical cage of 60 carbon atoms. It’s the largest molecule that has ever been analyzed at this level of experimental detail in the history of quantum mechanics. Fully understanding and controlling this molecule’s quantum details could lead to new scientific fields and applications, such as an entire quantum computer contained in a single buckyball.

Read more

Jan 25, 2019

Tech Trends 2019

Posted by in categories: computing, neuroscience

For the tenth consecutive year, #Deloitte, a global leader in audit and consulting, lists the technological trends that will transform the processes, products, and services of the most innovative companies in the world this year.

These technologies include advanced network architectures, serverless computing, and intelligent interfaces, as well as increased development of digital, cognitive and cloud experiences.


Yes, uncertainty is disconcerting. But much of the tech-driven disruption today—and, likely, going forward—is both understandable and knowable.

Read more

Jan 23, 2019

A Cooler Cloud: A Clever Conduit Cuts Data Centers’ Cooling Needs

Posted by in categories: computing, physics

The energy use of data centers is a major drag on resources, but they also use a lot of water. Any technology that increases their efficiency while reducing resource waste is a good thing.

“Now, Forced Physics, a company based in Scottsdale, Ariz., has developed a low-power system that it says could slash a data center’s energy requirements for cooling by 90 percent. The company’s JouleForce conductor is a passive system that uses ambient, filtered, nonrefrigerated air to whisk heat away from computer chips.”


The company that created it, Forced Physics, plans to install the technology in a pilot plant in February.

Continue reading “A Cooler Cloud: A Clever Conduit Cuts Data Centers’ Cooling Needs” »

Jan 23, 2019

This Japanese Fashion Model Isn’t a Human, She’s a Computer Generated Person

Posted by in categories: computing, futurism

Could this be the future of the modeling industry?

Read more

Jan 22, 2019

Announcing Hyperledger Grid, a new project to help build and deliver supply chain solutions!

Posted by in categories: bitcoin, computing, cryptocurrencies

While I’m not a big supporter of cryptocurrency, I am a supporter of utilizing blockchain technology in other areas. For example. logistics. The Linux Foundation announced the creation of the Hyperledger Grid project just for that purpose. However, as they state, this isn’t a software project, but a platform project.


Supply chain is commonly cited as one of the most promising distributed ledger use-cases. Initiatives focused on building supply chain solutions will benefit from shared, reusable tools. Hyperledger Grid seeks to assemble these shared capabilities in order to accelerate the development of ledger-based solutions for all types of cross-industry supply chain scenarios.

Grid intends to:

Continue reading “Announcing Hyperledger Grid, a new project to help build and deliver supply chain solutions!” »