Menu

Blog

Archive for the ‘computing’ category: Page 416

Apr 25, 2021

Study: ‘Fingerprint’ for 3D printer accurate 92% of time

Posted by in categories: computing, health, internet, security

3D printing is transforming everything from fashion and health care to transportation and toys. But this rapidly evolving technology, also known as additive manufacturing, can threaten national security and intellectual property rights.

To reduce illicit use of 3D printers, Zhanpeng Jin, Ph.D., associate professor in the Department of Computer Science and Engineering at the University at Buffalo, is developing a way to track the origin of 3D-printed items.

His concern was that, as long as people have the digital design for an item, which can be downloaded from the internet, sometimes as open-source material, people can print out anything they want, which can range from computer parts and toys to fully functional handguns and assault rifles.

Apr 24, 2021

A strategy to rejuvenate dead lithium inside batteries

Posted by in categories: chemistry, computing, mobile phones

Li-ion batteries and other emerging lithium-based battery technologies are currently used to power a wide range of devices, including smartphones, laptops, tablets and cameras. Despite their advantages, batteries containing lithium do not always retain their performance over time.

One of the main reasons for the performance decay observed in some Li-based batteries is that the lithium contained within them sometimes becomes inactive or “dead.” This “dead lithium” can cause capacity decay and thermal runaway, which can ultimately reduce a battery’s lifespan and impair its performance.

Researchers at Zhejiang University of Technology in China and Argonne National Laboratory in the U.S. have recently devised a strategy to restore inactive lithium in Li anodes. This strategy, outlined in a paper published in Nature Energy, is based on a chemical reaction known as iodine redox.

Apr 24, 2021

Intel CEO says co-designed x86 chips will fend off Arm threat

Posted by in categories: business, computing, mobile phones

If you can’t beat ‘em, join ‘em.


Arm is the technology company of the hour. Or one of, at least. The chip designer rose to great heights in the mobile phone biz and now its many license holders are looking to twist an ARM processor into something more computer-shaped. Arm is finding increasing number of advocates from Intel and AMD’s firm customers too: perhaps the most notable among them being Apple, with the M1 chip in MacBooks and the new iMac, but Amazon, Microsoft, and Arm’s prospective buyer, Nvidia, all have skin in the game.

Yet Intel has a plan: a brand new foundry business. That which will offer flexibility in a way that was largely ruled out by oppressive x86 licenses and Intel’s unwillingness to share in the past. It’s what Arm offers, after all. A way for companies to design a chip as they see fit, and leave the unwanted features on the cutting room floor.

Apr 22, 2021

First atomic model of human telomerase constructed

Posted by in categories: biotech/medical, computing, genetics, life extension

Telomeres are large nucleoproteins structures that cap the ends of chromosomes in eukaryotic cells. When a cell divides, a small portion of the telomere is lost due to the inherently incomplete process of genome replication. If left unchecked, over time the telomeres will reach a critically short length and the cell will face genomic instability, deterioration or death. To offset this shortening, an essential enzyme called telomerase rebuilds the telomeres by synthesizing new telomeric DNA repeats at chromosome ends. Kelly Nguyen’s group, in the LMB’s Structural Studies Division, has solved the first complete atomic model of this enzyme and discovered a histone dimer as novel telomerase subunits.

Telomeres act as a barrier to protect the genetic information from progressive degradation arising from incomplete DNA replication. Additionally, telomeres distinguish the natural chromosome ends from DNA double-strand breaks, thereby avoiding an illicit DNA damage response and preventing intrachromosomal fusion. This makes telomeres essential for the preservation of genome and chromosome stability. In previous research, Kelly had discovered the architecture and composition of human holoenzyme at 8 Å (Ångströms) resolution using cryo-EM. However, to understand the governing telomerase mediated maintenance, a high-resolution structure of the complex was required.

To conduct this study, Kelly’s group, in collaboration with Kathleen Collins at the University of California, Berkeley, and Rhiju Das at Stanford University, prepared telomerase by extracting it from cultured human cells, before imaging using cryo-EM—resulting in the collection of almost 44000 images. This data was analyzed using RELION—a complex computer program developed at the LMB—in order to achieve the 3.4−3.8 Å structure of telomerase. From this Kelly and members of her group, George Ghanim, Adam Fountain, and Marike van Roon, were able to build the first complete atomic model of telomerase, with 12 protein subunits and telomerase RNA. By completing the structure to such a high resolution, the group was not only able to illuminate how common RNA and protein motifs work together, but also to highlight new interactions.

Apr 21, 2021

Memristors Used to Make a Neural-Network Chip

Posted by in categories: computing, neuroscience

An electronic device called the memristor could be our best hope for making practical chips that borrow design points from the human brain.

Apr 20, 2021

NASA’s New Horizons Reaches a Rare Space Milestone – It’s Almost 5 Billion Miles Away and Still Exploring

Posted by in categories: computing, space travel

In the weeks following its launch in early 2006, when NASA ’s New Horizons was still close to home, it took just minutes to transmit a command to the spacecraft, and hear back that the onboard computer received and was ready to carry out the instructions.

As New Horizons crossed the solar system, and its distance from Earth jumped from millions to billions of miles, that time between contacts grew from a few minutes to several hours. And on April 17 at 12:42 UTC (or April 17 at 8:42 a.m. EDT), New Horizons reached a rare deep-space milepost – 50 astronomical units from the Sun, or 50 times farther from the Sun than Earth is.

Here’s one way to imagine just how far 50 AU is: Think of the solar system laid out on a neighborhood street; the Sun is one house to the left of “home” (or Earth), Mars would be the next house to the right, and Jupiter would be just four houses to the right. New Horizons would be 50 houses down the street, 17 houses beyond Pluto!

Apr 19, 2021

Virtual Humans Are Equal to Real Ones in Helping People Practice New Leadership Skills

Posted by in categories: biotech/medical, computing, virtual reality

Summary: Computer-generated, or virtual humans, prove to be just as good as humans in helping people practice leadership skills.

Source: Frontiers.

A virtual human can be as good as a flesh-and-blood one when it comes to helping people practice new leadership skills. That’s the conclusion from new research published in the journal Frontiers in Virtual Reality that evaluated the effectiveness of computer-generated characters in a training scenario compared to real human role-players in a conventional setting.

Apr 18, 2021

The semiconductor shortage is here to stay, but it will affect chip companies differently

Posted by in categories: biotech/medical, business, computing, internet

This article is part of a series tracking the effects of the COVID-19 pandemic on major businesses and sectors. For other articles and earlier versions, go here.

A global shortage of semiconductors — chips that power massive data-centers, modern autos and countless digital devices — has roiled global manufacturing and is not expected to end soon. It isn’t a blanket problem, however, as different sectors within the chip industry will continue to be affected by the shortage in different ways.

As the industry entered 2020, high demand was expected in the mobile chip area because of the rollout of 5G devices. That path was turned on its head when COVID-19 became a global pandemic, driving millions, if not billions, of people into the safety of their homes to work, go to school, be entertained and to socialize.

Apr 17, 2021

Mounting e-waste is harming the planet. Here’s how we solve the problem

Posted by in categories: biotech/medical, computing, mobile phones, sustainability

Sorry, we’re having trouble playing this video.

Learn More.

World Economic Forum.

Continue reading “Mounting e-waste is harming the planet. Here’s how we solve the problem” »

Apr 16, 2021

Innovative Technology for Building Ultralow-Loss Integrated Photonic Circuits

Posted by in categories: computing, materials

Encoding information into light, and transmitting it through optical fibers lies at the core of optical communications. With an incredibly low loss of 0.2 dB/km, optical fibers made from silica have laid the foundations of today’s global telecommunication networks and our information society.

Such ultralow optical loss is equally essential for integrated photonics, which enable the synthesis, processing and detection of optical signals using on-chip waveguides. Today, a number of innovative technologies are based on integrated photonics, including semiconductor lasers, modulators, and photodetectors, and are used extensively in data centers, communications, sensing and computing.

Integrated photonic chips are usually made from silicon that is abundant and has good optical properties. But silicon can’t do everything we need in integrated photonics, so new material platforms have emerged. One of these is silicon nitride (Si3N4), whose exceptionally low optical loss (orders of magnitude lower than that of silicon), has made it the material of choice for applications for which low loss is critical, such as narrow-linewidth lasers, photonic delay lines, and nonlinear photonics.