Toggle light / dark theme

When Mohammad Javad Khojasteh arrived at MIT’s Laboratory for Information and Decision Systems (LIDS) in 2020 to begin his postdoc appointment, he was introduced to an entirely new universe. The domain he knew best could be explained by “classical” physics that predicts the behavior of ordinary objects with near-perfect accuracy (think Newton’s three laws of motion). But this new universe was governed by bizarre laws that can produce unpredictable results while operating at scales typically smaller than an atom.

“The rules of quantum mechanics are counterintuitive and seem very strange when you first start to learn them,” Khojasteh says. “But the more you know, the clearer it becomes that the underlying logic is extremely elegant.”

As a member of Professor Moe Win’s lab, called the Wireless Information and Network Sciences Laboratory, or WINS Lab, Khojasteh’s job is to straddle both the classical and quantum realms, in order to improve state-of-the-art communication, sensing, and computational capabilities.

Microsoft and Canonical have teamed up to add systemd support to the Windows Subsystem for Linux, allowing a larger number of compatible apps to be installed.

Systemd is a Linux software application that acts as the system and service manager for initializing daemons/services during the bootup of the operating system. Systemd also supports tools that allow Linux admins to easily manage and control these services after they have been started.

As systemd is responsible for launching all other services, it runs as the first process (PID 1) created by the Linux kernel on startup. All other initial startup services are then started and managed by systemd, as shown by the process tree below from Ubuntu.

Quantum computers and communication devices work by encoding information into individual or entangled photons, enabling data to be quantum securely transmitted and manipulated exponentially faster than is possible with conventional electronics. Now, quantum researchers at Stevens Institute of Technology have demonstrated a method for encoding vastly more information into a single photon, opening the door to even faster and more powerful quantum communication tools.

Typically, quantum communication systems “write” information onto a photon’s spin . In this case, photons carry out either a right or left circular rotation, or form a quantum superposition of the two known as a two-dimensional qubit.

It’s also possible to encode information onto a photon’s orbital angular —the corkscrew path that light follows as it twists and torques forward, with each photon circling around the center of the beam. When the spin and angular momentum interlock, it forms a high-dimensional qudit—enabling any of a theoretically infinite range of values to be encoded into and propagated by a single photon.

Astronomers have recently found the nearest known black hole to our solar system. According to scientists, the black hole is 1,570 lightyears away and ten times larger than our sun.

Known as Gaia BH1, the research was led by Harvard Society Fellow astrophysicist Kareem El-Badry, with the Harvard-Smithsonian Center for Astrophysics (CfA) and the Max Planck Institute for Astronomy (MPIA).

In addition, El-Badry worked with researchers from CfA, MPIA, Caltech, UC Berkeley, the Flatiron Institute’s Center for Computational Astrophysics (CCA), the Weizmann Institute of Science, the Observatoire de Paris, MIT’s Kavli Institute for Astrophysics and Space Research, and other universities.

A theoretical physicist who has never had a regular job has won the most lucrative prize in science for his pioneering contributions to the mind-bending field of quantum computing.

David Deutsch, who is affiliated with the University of Oxford the $3m (about £2.65m) Breakthrough prize in fundamental physics with three other researchers who laid the foundations for the broader discipline of quantum information.

It may be possible to develop superconductors that operate at room temperature with further knowledge of the relationship between spin liquids and superconductivity, which would transform our daily lives.

Superconductors offer enormous technical and economic promise for applications such as high-speed hovertrains, MRI machines, efficient power lines, quantum computing.

Performing computation using quantum-mechanical phenomena such as superposition and entanglement.

Ralph C. Merkle is a computer scientist. He is one of the inventors of public key cryptography, the inventor of cryptographic hashing, and more recently a researcher and speaker of cryonics.

Videos in the talk: David Eagleman https://www.youtube.com/watch?v=-5tZtYns6kE molecular nanotechnology: https://www.youtube.com/watch?v=zqyZ9bFl_qg.

Filmed 2017/04/30