Toggle light / dark theme

Circa 2014 face_with_colon_three


Electronic transistors, which act as miniature switches for controlling the flow of electrical current, underpin modern-day microelectronics and computers. State-of-the-art microprocessor chips contain several billion transistors that switch signals flowing in electrical wires and interconnects. With increasing data-processing speeds and shrinking chip sizes, however, wires and interconnects waste considerable energy as heat.

One alternative is to replace electrical interconnects with energy-efficient that carry data using . However, a practical analogue of the transistor for optical interconnects does not yet exist. Hence, Vivek Krishnamurthy from the A*STAR Data Storage Institute and co-workers in Singapore and the United States are developing a practical ‘photonic transistor’ for optical interconnects that can control light signals in a similar manner to electronic .

The researchers’ latest photonic transistor design is based on prevalent semiconductor technology and offers attractive attributes of high switching gain, low switching power and high operating speed.

Researchers from RIKEN in Japan have achieved a major step toward large-scale quantum computing by demonstrating error correction in a three-qubit silicon-based quantum computing system. This work, published in Nature, could pave the way toward the achievement of practical quantum computers.

Quantum computers are a hot area of research today, as they promise to make it possible to solve certain important problems that are intractable using conventional computers. They use a completely different architecture, using superimposition states found in rather than the simple 1 or 0 binary bits used in conventional computers. However, because they are designed in a completely different way, they are very sensitive to environmental noise and other issues, such as decoherence, and require error correction to allow them to do precise calculations.

One important challenge today is choosing what systems can best act as “qubits”—the basic units used to make quantum calculations. Different candidate systems have their own strengths and weaknesses. Some of the popular systems today include superconducting circuits and ions, which have the advantage that some form of error correction has been demonstrated, allowing them to be put into actual use albeit on a small scale. Silicon-based quantum technology, which has only begun to be developed over the past decade, is known to have an advantage in that it utilizes a semiconductor nanostructure similar to what is commonly used to integrate billions of transistors in a small chip, and therefore could take advantage of current production technology.

Diseases such as Alzheimer’s and epilepsy will be easier to detect.

A 3D microchip made by a Swiss company will allow scientists to study the complexity of 3D cellular networks. This 3D chip will help to observe complex structures such as the human brain, according to a report published by Labiotech.eu.

Understanding how organs form and how their cells behave is essential to finding the causes and treatment for developmental disorders, as well as understanding certain diseases, said 3Brain.


A microchip that allows scientists to study the complexity of 3D cellular networks at unrivaled scale and precision has been added to 3Brain AG’s brain-on-chip portfolio.

In collaboration with Swiss precision manufacturing experts, CSEM, 3Brain AG made the announcement today (August 22).

The cell-electronic interface technology will also allow scientists to gain novel mechanistic insights into the inner workings of the most complex structure in the universe, the human brain.

It’s official: Apple has just sent out invites for its next hardware event. As expected, the company will share what it’s been working on for the past year on September 7th, with a live broadcast from Apple Park starting at 1PM ET. The invite features the words “Far out.” Make of that what you will.

The company is widely expected to announce four new iPhone models at the event. Leading up to today’s announcement, most reports have suggested the 2022 iPhone lineup will consist of a 6.1-inch iPhone 14, a 6.7-inch iPhone 14 Max, a 6.1-inch iPhone 14 Pro and a 6.7-inch iPhone 14 Pro Max. Apple reportedly won’t offer a new “mini” model this year due to lackluster sales of the iPhone 12 mini and iPhone 13 mini.

Enhancements on the standard iPhone 14 models reportedly include the addition of more RAM, longer-lasting batteries and a better selfie camera with autofocus. Meanwhile, the Pro models are expected to feature a new design that trades away Apple’s signature display notch for a Samsung-style hole-punch front camera cutout. Additionally, the Pro variants will reportedly feature a new 48-megapixel main camera and thinner display bezels. They’re also expected to be the only models to ship with Apple’s next-generation A16 chip.

The technology is based on integrated circuits, which typically rely on silicon semiconductors in order to process information in a way that is similar to the role played by the brain in the human body.

The research team discovered that integrated circuits capable of performing computational tasks could be achieved using “nearly any material” around us.

“We have created the first example of an engineering material that can simultaneously sense, think and act upon mechanical stress, without requiring additional circuits to process such signals,” said Ryan Harne, an associate professor of mechanical engineering at Penn State.

Chip makers will be able to put a trillion transistors in a package by the end of the decade in a move that will shake up the industry, says Pat Gelsinger, CEO of Intel.

This is one of the key drivers for Intel’s move into offering foundry services, he told leading chip designers in a keynote for the HotChips 34 conference in California last night. This will lead to more sharing of IP and drive new EDA tools, he says.

“We see our way clear to getting to a trillion transistors by the end of the decade,” he said. “With Ribbon FETs, using topside signal and backside power distribution and EUV and high NA we have a good path to the end of the decade,” he said, “With 2.5 and 3D packaging, these four together give us a path to a trillion transistor by the end of the decade.”

In a significant development, Massachusetts Institute of Technology (MIT) engineers have developed a new category of wireless wearable skin-like sensors for health monitoring that doesn’t require batteries or an internal processor.

The team’s sensor design is a form of electronic skin, or “e-skin” — a flexible, semiconducting film that conforms to the skin like electronic Scotch tape, according to a press release published by MIT.

“If there is any change in the pulse, or chemicals in sweat, or even ultraviolet exposure to skin, all of this activity can change the pattern of surface acoustic waves on the gallium nitride film,” said Yeongin Kim, study’s first author, and a former MIT postdoc scholar.