Toggle light / dark theme

A single chip has managed to transfer over a petabit-per-second according to research by a team of scientists from universities in Denmark, Sweden, and Japan. That’s over one million gigabits of data per second over a fibre optic cable, or basically the entire internet’s worth of traffic.

The researchers—A. A. Jørgensen, D. Kong, L. K. Oxenløwe—and their team successfully showed a data transmission of 1.84 petabits over a 7.9km fibre cable using just a single chip. That’s not quite as fast as some other alternatives with larger, bulkier systems, which have reached up to 10.66 petabits, but the key here is scale: the proposed system is very compact.

Researchers at the University of Texas at Austin have developed a decoder that uses information from fMRI scans to reconstruct human thoughts. Jerry Tang, Amanda LeBel, Shailee Jain and Alexander Huth have published a paper describing their work on the preprint server bioRxiv.

Prior efforts to create technology that can monitor and decode them to reconstruct a person’s thoughts have all consisted of probes placed in the brains of willing patients. And while such technology has proven useful for research efforts, it is not practical for use in other applications such as helping people who have lost the ability to speak. In this new effort, the researchers have expanded on work from prior studies by applying findings about reading and interpreting brain waves to data obtained from fMRI scans.

Recognizing that attempting to reconstruct brainwaves into individual words using fMRI was impractical, the researchers designed a decoding device that sought to gain an overall understanding of what was going on in the mind rather than a word-for-word decoding. The decoder they built was a that accepted fMRI data and returned paragraphs describing general thoughts. To train their algorithm, the researchers asked two men and one woman to lie in an fMRI machine while they listened to podcasts and recordings of people telling stories.

Basically the fibonacci sequence stabilized the quantum computers internal processes better essentially. This may fall into the theory of everything that supersymmetry and the fibonacci sequence can get us closer to a theory of everything even in quantum computers.


A dynamical topological phase with edge qubits that are dynamically protected from control errors, cross-talk and stray fields, is demonstrated in a quasiperiodically driven array of ten 171Yb+ hyperfine qubits in a model trapped-ion quantum processor.

Scientists continue to blow through data transmission records, with the fastest transmission of information between a laser and a single optical chip system now set at 1.8 petabits per second. That’s well in excess of the amount of traffic passing across the entire internet each second.

Here’s another comparison: the average broadband download speed in the US is 167 megabits per second. You need 1,000 megabits to get to a gigabit, and then 1 million gigabits to get up to 1 petabit.

No matter how you present it, 1.8 petabits is a serious amount of data to transmit in a second.

Researchers in Europe have developed an efficient way to deliver internet speeds at over 1 million gigabits per second through a single chip and laser system.

The experiment achieved a speed of 1.8 petabits per second, or nearly twice the amount of internet traffic the world transmits at the same rate. Amazingly, the feat was pulled off using only a single optical light source.

The research comes from a team at Technical University of Denmark and Chalmers University of Technology in Sweden. Last week, the group published a peer-reviewed paper (Opens in a new window) in Nature Photonics about the technology.

The engineering of so-called Floquet states leads to almost-perfect atom-optics elements for matter-wave interferometers—which could boost these devices’ ability to probe new physics.

Since Michelson and Morley’s famous experiment to detect the “luminiferous aether,” optical interferometry has offered valuable tools for studying fundamental physics. Nowadays, cutting-edge applications of the technique include its use as a high-precision ruler for detecting gravitational waves (see Focus: The Moon as a Gravitational-Wave Detector) and as a platform for quantum computing (see Viewpoint: Quantum Leap for Quantum Primacy). But as methods for cooling and controlling atoms have advanced, a new kind of interferometer has become available, in which light waves are replaced by matter waves [1]. Such devices can measure inertial forces with a sensitivity even greater than that of optical interferometers [2] and could reveal new physics beyond the standard model.

Foresight Biotech & Health Extension Meeting sponsored by 100 Plus Capital.
Program & apply to join: https://foresight.org/biotech-health-extension-program/

This video was recorded at the Foresight Longevity Workshop.

Join us:
► Twitter: https://twitter.com/foresightinst.
► Facebook: https://www.facebook.com/foresightinst.
► Instagram: https://www.instagram.com/existentialhope/
► LinkedIn: https://www.linkedin.com/company/foresight-institute.

If you enjoy what we do please support us via Patreon: https://www.patreon.com/foresightinstitute.