Menu

Blog

Archive for the ‘computing’ category: Page 355

Dec 20, 2020

Entangled Photons Created 100 Times More Efficiently Than Previously Possible

Posted by in categories: computing, quantum physics

Fast, ultra-bright photon source brings scalable quantum photonics within reach. Super-fast quantum computers and communication devices could revolutionize countless aspects of our lives — but first, researchers need a fast, efficient source of the entangled pairs of photons such systems use to tra.

Dec 20, 2020

Google Looks to Batteries as Replacement for Diesel Generators

Posted by in categories: climatology, computing, internet, sustainability

O,.o.


Google will use large batteries to replace the diesel generators at one of its data centers in Belgium, describing the project as a first step towards using cleaner technologies to provide backup power for its millions of servers around the world.

“Our project in Belgium is a first step that we hope will lay the groundwork for a big vision: a world in which backup systems at data centers go from climate change problems to critical components in carbon-free energy systems,” said Joe Kava, Vice President for Data Centers at Google. “We’re aiming to demonstrate that a better, cleaner solution has advanced far enough to keep the internet up and running.”

Continue reading “Google Looks to Batteries as Replacement for Diesel Generators” »

Dec 20, 2020

A molecule that works like a nanobattery

Posted by in categories: chemistry, computing, particle physics

How do molecular catalysts—molecules which, like enzymes, can trigger or accelerate certain chemical reactions—function, and what effects do they have? A team of chemists at the University of Oldenburg has come closer to the answers using a model molecule that functions like a molecular nanobattery. It consists of several titanium centers linked to each other by a single layer of interconnected carbon and nitrogen atoms. The seven-member research team recently published its findings, which combine the results of three multi-year Ph.D. research projects, in ChemPhysChem. The physical chemistry and chemical physics journal featured the basic research from Oldenburg on its cover.

To gain a better understanding of how the molecule works, the researchers, headed by first authors Dr. Aleksandra Markovic and Luca Gerhards and corresponding author Prof. Dr. Gunther Wittstock, performed electrochemical and spectroscopic experiments and used the university’s high-performance computing cluster for their calculations. Wittstock sees the publication of the paper as a “success story” for both the Research Training Groups within which the Ph.D. projects were conducted and for the university’s computing cluster. “Without the high-performance computing infrastructure, we would not have been able to perform the extensive calculations required to decipher the behavior of the molecule,” says Wittstock. “This underlines the importance of such computing clusters for current research.”

In the paper, the authors present the results of their analysis of a molecular structure, the prototype for which was the result of an unexpected chemical reaction first reported by the University of Oldenburg’s Chemistry Department in 2006. It is a highly complex molecular structure in which three titanium centers (commonly referred to in high school lessons as titanium ions) are connected to each other by a bridging ligand consisting of carbon and nitrogen. Such a compound would be expected to be able to accept and release several electrons through the exchange of electrons between the metal centers among other reasons.

Dec 19, 2020

Accelerator-on-a-chip to do research, fight cancer

Posted by in categories: biotech/medical, computing

Just as engineers once compressed some of the power of room-sized mainframes into desktop PCs, so too have Stanford researchers shown how to pack some of the punch delivered by today’s ginormous particle accelerators onto a tiny silicon chip.

Dec 19, 2020

TIMELAPSE OF FUTURE TECH: From 2022 — 4000+

Posted by in categories: biotech/medical, computing, Elon Musk, internet, neuroscience, quantum physics, space travel

The journey to see future technology starts in 2022, when Elon Musk and SpaceX send the first Starship to Mars — beginning the preparations for the arrival of the first human explorers.

We see the evolution of space exploration, from NASA’s Artemis mission, humans landing on Mars, and the interplanetary internet system going online. To the launch of the Starshot Alpha Centauri program, and quantum computers designing plants that can survive on Mars.

Continue reading “TIMELAPSE OF FUTURE TECH: From 2022 — 4000+” »

Dec 18, 2020

Russia, China, the U.S.: Who Will Win the Hypersonic Arms Race?

Posted by in categories: computing, military

One good reason for the rarity of radical designs is the enormous expense of the research. Engineers can learn only so much by running tests on the ground, using computational fluid-flow models and hypersonic wind tunnels, which themselves cost a pretty penny (and simulate only some limited aspects of hypersonic flight). Engineers really need to fly their creations, and usually when they do, they use up the test vehicle. That makes design iteration very costly.

Dec 18, 2020

The Heat: Chang’e-5 returns to Earth

Posted by in categories: computing, space

Mission accomplished! A Chinese capsule carrying soil and rock samples collected from the moon returns to earth. The Heat talks to a panel of experts.

Watch CGTN LIVE on your computer, tablet or mobile.
http://america.cgtn.com/livenews.

Continue reading “The Heat: Chang’e-5 returns to Earth” »

Dec 17, 2020

Ultra-Thin Designer Materials Unlock Elusive Quantum Phenomena With Huge Impact for Quantum Computing

Posted by in categories: computing, quantum physics

New research, published in Nature, has measured highly sought-after Majorana quantum states. A team of theoretical and experimental physicists have designed a new ultra-thin material that they have used to create elusive quantum states. Called one-dimensional Majorana zero energy modes, these quantum states could have a huge impact for quantum computing.

Dec 17, 2020

Three-party quantum private computation of cardinalities of set intersection and union based on GHZ states

Posted by in categories: computing, encryption, quantum physics, security

Quantum key distribution is one kind of important cryptographic protocols based on quantum mechanics, in which any outside eavesdropper attempting to obtain the secret key shared by two users will be detected. The successful detection comes from Heisenberg’s uncertainty principle: the measurement of a quantum system, which is required to obtain information of that system, will generally disturb it. The disturbances provide two users with the information that there exists an outside eavesdropper, and they can therefore abort the communication. Nowadays, most people need to share some of their private information for certain services such as products recommendation for online shopping and collaborations between two companies depending on their comm interests. Private Set Intersection Cardinality (PSI-CA) and Private Set Union Cardinality (PSU-CA), which are two primitives in cryptography, involve two or more users who intend to obtain the cardinalities of the intersection and the union of their private sets through the minimum information disclosure of their sets1,2,3.

The definition of Private Set Intersection (PSI), also called Private Matching (PM), was proposed by Freedman4. They employed balanced hashing and homomorphic encryption to design two PSI protocols and also investigated some variants of PSI. In 2012, Cristofaro et al.1 developed several PSI-CA and PSU-CA protocols with linear computation and communication complexity based on the Diffie-Hellman key exchange which blinds the private information. Their protocols were the most efficient compared with the previous classical related ones. There are also other classical PSI-CA or PSU-CA protocols5,6,7,8. Nevertheless, the security of these protocols relies on the unproven difficulty assumptions, such as discrete logarithm, factoring, and quadratic residues assumptions, which will be insecure when quantum computers are available9,10,11.

For the sake of improving the security of PSI-CA protocols for two parties, Shi et al.3 designed a probabilistic protocol where multi-qubit entangled states, complicated oracle operators, and measurements in high N-dimensional Hilbert space were utilized. And the same method in Ref.3 was later used to develop a PSI-CA protocol for multiple parties12. For easy implementation of a protocol, Shi et al.13 leveraged Bell states to construct another protocol for PSI-CA and PSU-CA problems that was more practical than that in Ref.3. In both protocols Ref.3 and Ref.13, only two parties who intend to get the cardinalities of the intersection and the union of their private sets are involved. Although Ref.12 works for multiple parties, it only solves the PSI-CA problem and requires multi-qubit entangled states, complicated oracle operators, and measurements. It then interests us that how we could design a more practical protocol for multiple parties to simultaneously solve PSI-CA and PSU-CA problems. Inspired by Shi et al.’s work, we are thus trying to design a three-party protocol to solve PSI-CA and PSU-CA problems, where every two and three parties can obtain the cardinalities of the intersection and the union of their respective private sets with the aid of a semi-honest third party (TP). TP is semi-honest means that he loyally executes the protocol, makes a note of all the intermediate results, and might desire to take other parties’ private information, but he cannot collude with dishonest parties. We then give a detailed analysis of the presented protocol’s security. Besides, the influence of six typical kinds of Markovian noise on our protocol is also analyzed.

Dec 17, 2020

Fujifilm, IBM unveil 580-terabyte magnetic tape

Posted by in categories: computing, particle physics

When it comes to magnetic tape storage capacity, smaller is larger. That is, as the magnetic particles that store data become smaller, more data can be stockpiled in the same amount of space.

Two leading tech giants put that simple principle to work and announced Wednesday that they have developed a magnetic tape cartridge boasting the most dense capacity of any media in the world. Fujifilm and IBM say research into a new material, strontium , led to the creation of a tape cartridge capable of storing 580 terabytes of data. That’s enough to store roughly 580 million books, according to an IBM blog post published Wednesday.

Considering there are about only 130 million books in existence today, that’ll leave plenty of room for extras.