Menu

Blog

Archive for the ‘computing’ category: Page 326

Nov 24, 2021

On-chip frequency shifters in the gigahertz range could be used in next generation quantum computers and networks

Posted by in categories: computing, internet, quantum physics, space

The ability to precisely control and change properties of a photon, including polarization, position in space, and arrival time, gave rise to a wide range of communication technologies we use today, including the Internet. The next generation of photonic technologies, such as photonic quantum networks and computers, will require even more control over the properties of a photon.

One of the hardest properties to change is a photon’s color, otherwise known as its frequency, because changing the frequency of a photon means changing its energy.

Today, most frequency shifters are either too inefficient, losing a lot of light in the , or they can’t convert light in the gigahertz range, which is where the most important frequencies for communications, computing, and other applications are found.

Nov 24, 2021

Emergent Matter Scientists Successfully Manipulate a Single Skyrmion at Room Temperature

Posted by in categories: computing, particle physics

Scientists from the RIKEN Center for Emergent Matter Science and collaborators have shown that they can manipulate single skyrmions—tiny magnetic vortices that could be used as computing bits in future ultra-dense information storage devices—using pulses of electric current, at room temperature.

Skyrmions—tiny particles that can be moved under small electric currents several orders lower than those used for driving magnetic domain walls—are being studied in the hope of developing promising applications in data storage devices with low energy consumption. The key to creating spintronics devices is the ability to effectively manipulate, and measure, a single tiny vortex.

Most research to date has focused on the dynamics for skyrmions a micrometer or more in size or skyrmion clusters stabilized below room temperature. For the current research, published in Nature Communications, the researchers used a thin magnetic plate made up of a compound of cobalt, zinc, and manganese, Co9Zn9Mn2, which is known as a chiral-lattice magnet. They directly observed the dynamics of a single skyrmion, with a size of 100 nanometers, at room temperature using Lorentz transmission electron microscopy. They were able to track the motions of the skyrmion and control its Hall motion directions by flipping the magnetic field, when they subjected it to ultrafast pulses of electric current—on the scale of nanoseconds.

Nov 24, 2021

256-qubit Quantum Computer Unveiled

Posted by in categories: computing, particle physics, quantum physics

The first 256-qubit quantum computer has been announced by startup company QuEra, founded by MIT and Harvard scientists.

QuEra Computing Inc. – a new Boston, Massachusetts-based company – has emerged from stealth mode with $17 million in funding and has completed the assembly of a 256-qubit device. Its funders include Japanese e-commerce giant Rakuten, Day One Ventures, Frontiers Capital, and the leading tech investors Serguei Beloussov and Paul Maritz. The company recently received a DARPA award, and has already generated $11 million in revenue.

QuEra Computing recently achieved ground-breaking research on neutral atoms, developed at Harvard University and the Massachusetts Institute of Technology, which is being used as the basis for a highly scalable, programmable quantum computer solution. The QuEra team is aiming to build the world’s most powerful quantum computers to take on computational tasks that are currently deemed impossibly hard.

Nov 24, 2021

A new artificial material mimics quantum-entangled rare earth compounds

Posted by in categories: computing, particle physics, quantum physics

Physicists have created a new ultra-thin, two-layer material with quantum properties that normally require rare earth compounds. This material, which is relatively easy to make and does not contain rare earth metals, could provide a new platform for quantum computing and advance research into unconventional superconductivity and quantum criticality.

The researchers showed that by starting from seemingly common materials, a radically new quantum state of matter can appear. The discovery emerged from their efforts to create a quantum spin liquid which they could use to investigate emergent quantum phenomena such as gauge theory. This involves fabricating a single layer of atomically thin tantalum disulphide, but the process also creates islands that consist of two layers.

Continue reading “A new artificial material mimics quantum-entangled rare earth compounds” »

Nov 24, 2021

Japan Is Investing Over $5 Billion to Solve the World’s Chip Shortage

Posted by in categories: computing, economics, government

Bringing global giants into the economic fight.

The world’s biggest chip-making nation is getting serious.

Continue reading “Japan Is Investing Over $5 Billion to Solve the World’s Chip Shortage” »

Nov 24, 2021

Math may have caught up with Google’s quantum-supremacy claims

Posted by in categories: computing, mathematics, quantum physics

But, given the rapidly evolving quantum computing landscape, that may not matter.

Nov 24, 2021

TSMC To Receive $3.47 Billion In Subsidies From Japan Government For $7 Billion Chip Factory It Will Set Up In Kumamoto

Posted by in categories: computing, government

TSMC getting half their factory paid for by the Japan government shows how concerned governments are getting about the fact that we are down to 3 companies in the world that can make high-end chips. Sony is also contributing $500 million to this factory in addition to the Japan government money.


Japan will provide 600 billion yen ($5.2 billion) as part of its fiscal 2021 supplementary budget to support advanced semiconductor manufacturers.

Nov 23, 2021

Samsung is building a new $17 billion advanced chip plant in Texas

Posted by in category: computing

Samsung is building a new $17 billion factory in Taylor, Texas to produce its processors. While the company is a giant in producing memory chips, it’s currently lagging behind companies like TSMC when it comes to processors.

Nov 23, 2021

Reverse-engineering the cortical architecture for controlled semantic cognition

Posted by in categories: computing, engineering

Circa 2021


By varying the presence of different building blocks in a computational model, Jackson et al. reverse-engineer the architecture for controlled semantic cognition and test this model against evidence from anatomy, neuropsychology and functional imaging.

Nov 23, 2021

The Mathematical Structure of Particle Collisions Comes Into View

Posted by in categories: computing, information science, mathematics, particle physics, quantum physics

And that’s where physicists are getting stuck.

Zooming in to that hidden center involves virtual particles — quantum fluctuations that subtly influence each interaction’s outcome. The fleeting existence of the quark pair above, like many virtual events, is represented by a Feynman diagram with a closed “loop.” Loops confound physicists — they’re black boxes that introduce additional layers of infinite scenarios. To tally the possibilities implied by a loop, theorists must turn to a summing operation known as an integral. These integrals take on monstrous proportions in multi-loop Feynman diagrams, which come into play as researchers march down the line and fold in more complicated virtual interactions.

Physicists have algorithms to compute the probabilities of no-loop and one-loop scenarios, but many two-loop collisions bring computers to their knees. This imposes a ceiling on predictive precision — and on how well physicists can understand what quantum theory says.