Menu

Blog

Archive for the ‘computing’ category: Page 325

Feb 13, 2022

Intel says its new crypto chip is designed to be energy-efficient

Posted by in categories: blockchains, computing, cryptocurrencies, sustainability

Its “blockchain accelerator” is set to ship later this year.


Intel is working on a new sustainability-focused chip designed to mine cryptocurrency. One of its first customers include the Jack Dorsey-owned fintech company Block (formerly known as Square).

Feb 13, 2022

How Quantum Pairs Stitch Space-Time

Posted by in categories: computing, quantum physics

Similarly, entanglement seems to be fundamental to the existence of space-time. This was the conclusion reached by a pair of postdocs in 2006: Shinsei Ryu (now at the University of Illinois, Urbana-Champaign) and Tadashi Takayanagi (now at Kyoto University), who shared the 2015 New Horizons in Physics prize for this work. “The idea was that the way that [the geometry of] space-time is encoded has a lot to do with how the different parts of this memory chip are entangled with each other,” Van Raamsdonk explained.

Inspired by their work, as well as by a subsequent paper of Maldacena’s, in 2010 Van Raamsdonk proposed a thought experiment to demonstrate the critical role of entanglement in the formation of space-time, pondering what would happen if one cut the memory chip in two and then removed the entanglement between qubits in opposite halves. He found that space-time begins to tear itself apart, in much the same way that stretching a wad of gum by both ends yields a pinched-looking point in the center as the two halves move farther apart. Continuing to split that memory chip into smaller and smaller pieces unravels space-time until only tiny individual fragments remain that have no connection to one another. “If you take away the entanglement, your space-time just falls apart,” said Van Raamsdonk. Similarly, “if you wanted to build up a space-time, you’d want to start entangling [qubits] together in particular ways.”

Combine those insights with Swingle’s work connecting the entangled structure of space-time and the holographic principle to tensor networks, and another crucial piece of the puzzle snaps into place. Curved space-times emerge quite naturally from entanglement in tensor networks via holography. “Space-time is a geometrical representation of this quantum information,” said Van Raamsdonk.

Feb 13, 2022

No more transistors: The end of Moore’s law

Posted by in categories: computing, physics

We can’t make transistors any smaller, is this the end of Moore’s Law?

There has been a lot of talk about the end of Moore’s Law for at least a decade now and what kind of implications this will have on modern society. Since the invention of the computer transistor in 1947, the number of transistors packed onto the silicon chips that power the modern world has steadily grown in density, leading to the exponential growth of computing power over the last 70 years. A transistor is a physical object, however, and being purely physical it is governed by laws of physics like every other physical object. That means there is a physical limit to how small a transistor can be. Back when Gordon Moore made his famous prediction about the pace of growth in computing power, no one was really thinking about transistors at nanometer scales. But as we enter the third decade of the 21st century, our reliance on packing more transistors into the same amount of silicon is brushing up against the very boundaries of what is physically possible, leading many to worry that the pace of innovation we’ve become accustomed to might come to a screeching end in the very near future.

Full Story:

Continue reading “No more transistors: The end of Moore’s law” »

Feb 12, 2022

Robust Local Synchronization — Research Notebook Video

Posted by in categories: alien life, computing

Discussion and demos about synchronizing the asynchronous robustly in computing systems.

The T2 Tile Project:
https://www.youtube.com/channel/UC1M91QuLZfCzHjBMEKvIc-A
https://t2tile.com/

Continue reading “Robust Local Synchronization — Research Notebook Video” »

Feb 12, 2022

Intel is Building a GPU Design Team in Arm’s Backyard

Posted by in categories: computing, engineering

According to a new job posting, Intel is setting up a GPU development center in the UK. The company is looking for experienced hardware design engineers to develop low-power GPU architectures for portable computing devices.

“We are building a brand-new team in the UK to focus solely on class-leading low power GPU architectures and designs to enable the next generation of portable computing,” reads the job description posted by Intel’s Xe Architecture and IP Engineering (XAE) Low Power Group. “This requires proven skills in a range of engineering disciplines from architecture, hardware design, software driver design all with low power as the key focus.”

Feb 12, 2022

Why portable EV charging units — that can double as grid storage — are all the Go

Posted by in categories: computing, electronics

ZipCharge announces trial of its portable EV charging solution that can double as energy storage for the grid.


The production issues could impact SSD pricing.

Feb 12, 2022

SSD prices could spike after Western Digital loses 6.5 billion gigabytes of NAND chips

Posted by in categories: computing, materials

The production issues could impact SSD pricing.


Western Digital says it has lost at least 6.5 exabytes (6.5 billion gigabytes) of flash storage due to contamination issues at its NAND production facilities. The contamination could see the price of NAND — the main component of SSDs — spike up to 10 percent, according to market research firm TrendForce. Any potential NAND shortages or price fluctuations could affect the PC market over the next few months, which had another big year in 2021 despite global chip shortages and demand for GPUs.

The contamination of materials used in the manufacturing processes appears to have been detected in late January at two plants in Japan, with Western Digital’s joint venture partner, Kioxia (previously Toshiba), revealing it has affected BiCS 3D NAND flash memory.

Continue reading “SSD prices could spike after Western Digital loses 6.5 billion gigabytes of NAND chips” »

Feb 12, 2022

Materials challenges and opportunities for quantum computing hardware

Posted by in categories: computing, information science, particle physics, quantum physics

The potential of quantum computers to solve problems that are intractable for classical computers has driven advances in hardware fabrication. In practice, the main challenge in realizing quantum computers is that general, many-particle quantum states are highly sensitive to noise, which inevitably causes errors in quantum algorithms. Some noise sources are inherent to the current materials platforms. de Leon et al. review some of the materials challenges for five platforms for quantum computers and propose directions for their solution.

Science, this issue p. eabb2823.

Feb 12, 2022

Out of a total of 23 monkeys implanted with Elon Musk’s Neuralink brain chips at the University of California Davis between 2017 and 2020, at least 15 reportedly died

Posted by in categories: biotech/medical, computing, Elon Musk, neuroscience

Via Business Insider and the New York Post, the news comes from the Physicians Committee for Responsible Medicine, an animal-rights group that viewed over 700 pages of documents, veterinary records, and necropsy reports through a public records request at the university.

-Wren Graves.

Feb 12, 2022

Researchers Have Achieved Sustained Long-Distance Quantum Teleportation

Posted by in categories: computing, particle physics, quantum physics

In a way, entangled particles behave as if they are aware of how the other particle is behaving. Quantum particles, at any point, are in a quantum state of probabilities, where properties like position, momentum, and spin of the particle are not precisely determined until there is some measurement. For entangled particles, the quantum state of each depends on the quantum state of the other; if one particle is measured and changes state, for example, the other particle’s state will change accordingly.

The study aimed to teleport the state of quantum qubits, or “quantum bits,” which are the basic units of quantum computing. According to the study, the researchers set up what is basically a compact network with three nodes: Alice, Charlie, and Bob. In this experiment, Alice sends a qubit to Charlie. Bob has an entangled pair of qubits, and also sends one qubit to Charlie, where it interferes with Alice’s qubit. Charlie projects Alice’s qubit onto an entangled quantum Bell State that transfers the state of Alice’s original qubit to Bob’s remaining qubit.

The breakthrough is notable for a few reasons. Many previous demonstrations of quantum teleportation have proven to be unstable over long distances. For example, in 2016, researchers at the University of Calgary were able to perform quantum teleportation at a distance of six kilometers. This was the world record at the time and was seen as a major achievement.