Toggle light / dark theme

Ferroelectrics are special materials with polarized positive and negative charges—like a magnet has north and south poles—that can be reversed when external electricity is applied. The materials will remain in these reversed states until more power is applied, making them useful for data storage and wireless communication applications.

Now, turning a non-ferroelectric material into one may be possible simply by stacking it with another ferroelectric material, according to a team led by scientists from Penn State who demonstrated the phenomenon, called proximity ferroelectricity.

The discovery offers a new way to make without modifying their chemical formulation, which commonly degrades several useful properties. This has implications for next-generation processors, optoelectronics and quantum computing, the scientists said. The researchers published their findings in the journal Nature.

Researchers at the University of Oklahoma have developed a breakthrough method of adding a single nitrogen atom to molecules, unlocking new possibilities in drug research and development. Now published in the journal Science, this research is already gaining international attention from drug manufacturers.

Nitrogen atoms and nitrogen-containing chemical structures, called heterocycles, play a pivotal role in medicinal chemistry and . A team led by OU associate professor Indrajeet Sharma has demonstrated that by using a short-lived chemical called sulfenylnitrene, researchers can insert one nitrogen atom into bioactive molecules and transform them into new pharmacophores that are useful for making drugs.

This process is called skeletal editing and takes inspiration from Sir Derek Barton, the recipient of the 1969 Nobel Prize in Chemistry.

Just like your body has a skeleton, every cell in your body has a skeleton—a cytoskeleton to be precise. This provides cells with mechanical resilience, as well as assisting with cell division. To understand how real cells work, e.g. for drug and disease research, researchers create artificial cells in the laboratory.

However, many artificial cells to date cannot be used to study how cells respond to forces as they don’t have a . TU/e researchers have designed a polymer-based network for artificial cells that mimics a real cytoskeleton, thus making it possible to study with greater accuracy in artificial cells how cells respond to forces.

The research is published in the journal Nature Chemistry.

While most of us are familiar with magnets from childhood games of marveling at the power of their repulsion or attraction, fewer realize the magnetic fields that surround us—and the ones inside us. Magnetic fields are not just external curiosities; they play essential roles in our bodies and beyond, influencing biological processes and technological systems alike. A recent arXiv publication from the University of Chicago’s Pritzker School of Molecular Engineering and Argonne National Laboratory highlights how magnetic fields in the body may be analyzed using quantum-enabled fluorescent proteins, with hopes of applying to cell formation or early disease detection.

Detecting subtle changes in magnetic fields may equate to beyond subtle impacts in certain fields. For instance, quantum sensors could be applied to the detection of electromagnetic anomalies in data centers, potentially revealing evidence of malicious tampering. Similarly, they might be used to study changes in the brain’s electromagnetic signals, offering insights into neurological diseases such as the onset of dementia. However, these applications demand sensors that are not only sensitive but also capable of operating reliably in real-world conditions.

Spin qubits, known for their notable sensitivity to magnetic fields, are introduced in the study as a compelling solution. Traditionally, spin qubits have been formed from nitrogen-vacancy centers in diamonds. While these systems have demonstrated remarkable precision, the diamonds’ bulky size in relation to molecules and complex surface chemistry limit their usability in biological environments. This creates a need for a more adaptable and biologically compatible sensor.

Per-and polyfluorinated alkyl substances (PFAS) earn their “forever chemical” moniker by persisting in water, soil and even the human brain. This unique ability to cross the blood-brain barrier and accumulate in brain tissue makes PFAS particularly concerning, but the underlying mechanism of their neurotoxicity must be studied further.

To that end, a new study by University at Buffalo researchers has identified 11 genes that may hold the key to understanding the brain’s response to these pervasive chemicals commonly found in everyday items. The paper is published in the journal ACS Chemical Neuroscience.

These genes, some involved in processes vital for neuronal health, were found to be consistently affected by PFAS exposure, either expressing more or less, regardless of the type of PFAS compounds tested. For example, all compounds caused a gene key for neuronal cell survival to express less, and another gene linked to neuronal cell death to express more.

A new study uncovers a molecular modification method for converting CO2 into valuable chemical resources using a platinum surface.

Copper-based (Cu) materials are widely recognized for their efficiency in converting CO2 into valuable hydrocarbons via the CO2 reduction reaction (CO2RR). However, their stability, particularly in acidic environments, needs significant improvement. In contrast, metallic platinum (Pt) demonstrates excellent stability under both acidic and alkaline conditions. However, its high activity in the hydrogen evolution reaction (HER) hinders its effectiveness in CO2RR applications.

To address these challenges, composite materials incorporating metal-doped molecules offer a promising solution. These modified molecules can be securely retained at the interface, forming a unique structure that enhances the metal interface properties. This configuration not only increases the contact between reactants and active sites but also optimizes the adsorption strength of critical intermediates, ultimately improving catalytic performance.

A groundbreaking study showcases the creation of sustainable hydrophobic paper, enhanced by cellulose nanofibres and peptides, presenting a biodegradable alternative to petroleum-based materials, with potential uses in packaging and biomedical devices.

Researchers aimed to develop hydrophobic paper by leveraging the strength and water resistance of cellulose nanofibers, creating a sustainable, high-performance material suitable for packaging and biomedical applications. This innovative approach involved integrating short protein chains, known as peptide sequences, without chemically altering the cellulose nanofibers. The result is a potential alternative to petroleum-based materials, with significant environmental benefits.

The study, titled “Nanocellulose-short peptide self-assembly for improved mechanical strength and barrier performance,” was recently featured on the cover of the Journal of Materials Chemistry B. The research was conducted by the “Giulio Natta” Department of Chemistry, Materials, and Chemical Engineering at Politecnico di Milano, in collaboration with Aalto University, the VTT-Technical Research Centre of Finland, and the SCITEC Institute of the CNR.

Early Formation of Life’s Building Blocks

A groundbreaking study published in Nature Astronomy has revealed that amino acids, essential for life, can form in dark interstellar clouds long before stars and planets emerge. Glycine, the simplest amino acid, was shown to form on the surface of icy dust grains in cold, energy-deprived environments through a process called “dark chemistry.” These findings challenge the long-standing belief that UV radiation was required to create glycine, significantly expanding our understanding of how life’s precursors emerge in space.

Get a Wonderful Person Tee: https://teespring.com/stores/whatdamath.
More cool designs are on Amazon: https://amzn.to/3QFIrFX
Alternatively, PayPal donations can be sent here: http://paypal.me/whatdamath.

Hello and welcome! My name is Anton and in this video, we will talk about the potential dangers of mirror life.
Links:


https://theconversation.com/mirror-life-forms-may-sound-like…ent-246013
https://www.nature.com/articles/s41565-024-01627-z.
https://www.nature.com/articles/s41557-023-01411-x.
Previous videos:


https://youtu.be/0MRGJNKACYs.
https://youtu.be/L1wkR-92Rys.
#chirality #biology #mirrorlife.

0:00 Mirror life?
0:40 Chirality and handedness of molecules and why it’s important.
2:40 Recent advances in biochemistry.
3:45 New technical report warns science.
4:50 All life is handed.
6:00 What this could do in theory.
7:45 Conclusions and additional propositions.

Support this channel on Patreon to help me make this a full time job:
https://www.patreon.com/whatdamath.

Bitcoin/Ethereum to spare? Donate them here to help this channel grow!
bc1qnkl3nk0zt7w0xzrgur9pnkcduj7a3xxllcn7d4
or ETH: 0x60f088B10b03115405d313f964BeA93eF0Bd3DbF

Space Engine is available for free here: http://spaceengine.org.

– (

The work, published today in Nature, marks a significant step forward in our ability to study how the human body takes shape during early development.

The notochord, a rod-shaped tissue, is a crucial part of the scaffold of the developing body. It is a defining feature of all animals with backbones and plays a critical role in organising the tissue in the developing embryo.

Despite its importance, the complexity of the structure has meant it has been missing in previous lab-grown models of human trunk development.

In this research, the scientists first analysed chicken embryos to understand exactly how the notochord forms naturally. By comparing this with existing published information from mouse and monkey embryos, they established the timing and sequence of the molecular signals needed to create notochord tissue.

With this blueprint, they produced a precise sequence of chemical signals and used this to coax human stem cells into forming a notochord.

The stem cells formed a miniature ‘trunk-like’ structure, which spontaneously elongated to 1–2 millimetres in length. It contained developing neural tissue and bone stem cells, arranged in a pattern that mirrors development in human embryos. This suggested that the notochord was encouraging cells to become the right type of tissue at the right place at the right time.