Toggle light / dark theme

The melting point is one of the most important measurements of material properties, which informs potential applications of materials in various fields. Experimental measurement of the melting point is complex and expensive, but computational methods could help achieve an equally accurate result more quickly and easily.

A research group from Skoltech conducted a study to calculate the maximum of a high-entropy carbonitrides—a compound of titanium, zirconium, tantalum, hafnium, and niobium with carbon and nitrogen.

The results published in the Scientific Reports journal indicate that high-entropy carbonitrides can be used as promising materials for protective coatings of equipment operating under —high temperature, thermal shock, and chemical corrosion.

Researchers discovered that the mRNA modification m6A triggers rapid degradation, regulating protein production. This breakthrough could inform drug development to manage protein-related diseases.

Messenger ribonucleic acids (mRNA) are like the architects of our bodies. They carry precise blueprints for building proteins, which are read and assembled by their cellular partners, the ribosomes. Proteins are essential for our survival, as they regulate cell division, bolster the immune system, and make our cells resilient against external threats.

Just like in real-world construction, some cellular blueprints require extra instructions—such as when a protein needs to be produced rapidly or when corrections are needed for a flawed design. In our bodies, this role is fulfilled by RNA modifications. These small chemical changes function like detailed annotations, offering additional guidance to specific parts of the mRNA for optimal protein production.

A recent study from Stanford’s Wu Tsai Neurosciences Institute has shed light on the interplay between two key brain chemicals, dopamine and serotonin, revealing their opposing roles in shaping our decisions and learning processes. Published in Nature, the research demonstrates for the first time that dopamine and serotonin operate as a “gas and brake” system, jointly influencing how we learn from rewards. The findings have broad implications, from understanding everyday decision-making to developing treatments for neurological and psychiatric conditions such as addiction, depression, and Parkinson’s disease.

Dopamine and serotonin are crucial to many aspects of human behavior, including reward processing and decision-making. Both neurotransmitters are also implicated in a variety of mental health disorders. While previous research has established their individual roles—dopamine is linked to reward prediction and seeking, while serotonin promotes long-term thinking and patience—the precise nature of their interaction has remained unclear.

Two competing theories have sought to explain their dynamic: the “synergy hypothesis,” which posits that dopamine focuses on immediate rewards and serotonin on long-term benefits, and the “opponency hypothesis,” suggesting the two act in opposition, with dopamine encouraging impulsive action and serotonin promoting restraint. The Stanford researchers aimed to directly test these theories using advanced experimental methods.

Researchers from Tokyo Metropolitan University have made tungsten disulfide nanotubes which point in the same direction when formed, for the first time. They used a sapphire surface under carefully controlled conditions to form arrayed tungsten disulfide nanotubes, each consisting of rolled nanosheets, using chemical vapor deposition.

The team’s technique resolves the long-standing issue of jumbled orientations in collected amounts of nanotubes, promising real world applications for the exotic anisotropy of single nanotubes.

The study is published in the journal Nano Letters.

A new solar cell process using Sn(II)-perovskite oxide material offers a promising pathway for green hydrogen production through water splitting, advancing sustainable energy technologies.

Experts in nanoscale chemistry have made significant progress toward sustainable and efficient hydrogen production from water using solar power.

An international collaborative study led by Flinders University, involving researchers from South Australia, the US, and Germany, has uncovered a novel solar cell process that could play a key role in future technologies for photocatalytic water splitting—a critical step in green hydrogen production.

Dwarf galaxies like the SMC are often un-evolved when it comes to their chemistry because their history of star formation isn’t very extensive, so they haven’t had a chance to build up many heavy elements, such as carbon, nitrogen, oxygen, silicon or iron. NGC 346, for instance, contains about 10% the abundance of heavy elements that star-forming regions in our Milky Way galaxy have. This makes clusters such as NGC 346 great proxies for studying conditions akin to those found in the early universe.

NGC 346 is still forming lots of stars, and JWST found that many of the young ones, with ages of 20 to 30 million years, still possess planet-forming disks around them. Their existence confounds expectations.

“With Webb, we have a strong confirmation of what we saw with Hubble, and we must rethink how we create computer models for planet formation and early evolution in the young universe,” said Guido De Marchi of the European Space Research and Technology Centre (ESTEC) in the Netherlands, who led the research.

Researchers at Rice University have made a meaningful advance in the simulation of molecular electron transfer—a fundamental process underpinning countless physical, chemical and biological processes. The study, published in Science Advances, details the use of a trapped-ion quantum simulator to model electron transfer dynamics with unprecedented tunability, unlocking new opportunities for scientific exploration in fields ranging from molecular electronics to photosynthesis.

Electron transfer, critical to processes such as cellular respiration and energy harvesting in plants, has long posed challenges to scientists due to the complex quantum interactions involved. Current computational techniques often fall short of capturing the full scope of these processes. The multidisciplinary team at Rice, including physicists, chemists and biologists, addressed these challenges by creating a programmable quantum system capable of independently controlling the key factors in : donor-acceptor energy gaps, electronic and vibronic couplings and environmental dissipation.

Using an ion crystal trapped in a vacuum system and manipulated by , the researchers demonstrated the ability to simulate real-time spin dynamics and measure transfer rates across a range of conditions. The findings not only validate key theories of quantum mechanics but also pave the way for novel insights into light-harvesting systems and molecular devices.

The search for superconductivity in hydrogen-rich compounds known as hydrides has been an emotional rollercoaster ride for the scientific community. Excitement mounted a few years ago, as hydride experiments had physicists imagining that a Holy Grail, room-temperature superconductivity, might be within reach. But the field was shocked in 2023 by allegations of malpractice and fraud. Now a group of physicists—leading superconductivity experts who aren’t involved in hydride research—has offered an independent assessment of the available body of work on these materials [1]. They conclude that there is overwhelming evidence for superconductivity in hydrides.

“The more I read the foundational literature, and the more I learned about the way that results were being repeated, the more it became clear to me that hydride superconductivity is completely genuine,” says Andrew Mackenzie of the Max Planck Institute for Chemical Physics of Solids in Germany and the University of St Andrews in the UK.

Mackenzie was one of the initiators of the group’s work. “At conferences last spring, guys my age were having lots of young people coming up to ask: What’s going on in hydrides?” he says. After a communal discussion at a superconductivity meeting in Berlin in August, he and other researchers thought that something needed to be done to address young researchers’ concerns. They organized a group that would review available data with the goal of delivering an objective evaluation of hydride superconductivity claims, says Jörg Schmalian of the Karlsruhe Institute of Technology in Germany, who is one of the article’s cosigners.

Investigators from Cedars-Sinai and the University of California, San Francisco (UCSF) have identified a new way to deliver instructions that tell stem cells to grow into specific bodily structures, a critical step in eventually regenerating and repairing tissues and organs.

The scientists engineered cells that form structures called “synthetic organizers.” These organizers provided instructions to the stem cells through called morphogens, which stimulated and enabled the stem cells to grow into specific complex tissues and organ-like assemblies.

The research was conducted with mouse , and the findings were published in Cell.

If you’ve heard of two of the brain’s chemical neurotransmitters, it’s probably dopamine and serotonin. Never mind that glutamate and GABA do most of the work—it’s the thrill of dopamine as the “pleasure chemical” and serotonin as a tender mood-stabilizer that attract all the headlines.

Of course, the headlines mostly get it wrong. Dopamine’s role in shaping behavior goes way beyond simple concepts like “pleasure” or even “reward”. And the fact that it takes weeks or months for serotonin-boosting SSRI antidepressants to work suggests that it’s not actually the immediate jump in serotonin levels that drum out the doldrums of depression, but some still-mysterious shift in downstream brain circuits.

A new study from Stanford’s Wu Tsai Neurosciences Institute reveals yet another new facet of these mood-managing molecules. The research, published November 25, 2024 in Nature, demonstrates for the first time exactly how dopamine and serotonin work together—or more precisely, in opposition—to shape our behavior.