Toggle light / dark theme

Yale-developed technology restores cell, organ function in pigs after death

Within minutes of the final heartbeat, a cascade of biochemical events triggered by a lack of blood flow, oxygen, and nutrients begins to destroy a body’s cells and organs. But a team of Yale scientists has found that massive and permanent cellular failure doesn’t have to happen so quickly.


The researchers stressed that additional studies are necessary to understand the apparently restored motor functions in the animals, and that rigorous ethical review from other scientists and bioethicists is required.

The experimental protocols for the latest study were approved by Yale’s Institutional Animal Care and Use Committee and guided by an external advisory and ethics committee.

The OrganEx technology could eventually have several potential applications, the authors said. For instance, it could extend the life of organs in human patients and expand the availability of donor organs for transplant. It might also be able to help treat organs or tissue damaged by ischemia during heart attacks or strokes.

Researchers propose affordable and sustainable alternative to lithium-ion batteries

Concerns regarding scarcity, high prices, and safety regarding the long-term use of lithium-ion batteries has prompted a team of researchers from Rensselaer Polytechnic Institute to propose a greener, more efficient, and less expensive energy storage alternative.

In research published recently in Proceedings of the National Academy of Science (PNAS), corresponding author Nikhil Koratkar, the John A. Clark and Edward T. Crossan Professor of Engineering at Rensselaer, and his team, assert that could be used as an alternative to lithium-ions in batteries because of its abundance and low cost.

“The vast majority of rechargeable battery products are based on lithium-ion technology, which is the gold standard in terms of performance,” said Dr. Koratkar. “However, the Achilles’ heel for lithium-ion technology is cost. Lithium is a limited resource on the planet, and its price has increased drastically in recent years. We are working on an inexpensive, abundant, safe, and sustainable battery chemistry that uses ions in an aqueous, water-based electrolyte.”

An engineering breakthrough using DNA could unlock the quantum computing revolution

Scientists from the University of Virginia School of Medicine and collaborators used the building blocks of life to potentially revolutionize electronics.

The scientists utilized DNA to guide a chemical reaction that would overcome the barrier to Little’s superconductor, which was once thought to be “insurmountable”, a press statement reveals.

Red mud is piling up. Can scientists figure out what to do with it?

Practical and glamorous, aluminium is prized for making products from kitchen foil and beverage cans to Tesla Roadsters and aircraft. But the silvery metal—abundant, cheap, lightweight, and corrosion resistant—has a dark side: red mud. This brownish red slurry, a caustic mishmash of metal-and silicon-rich oxides, often with a dash of radioactive and rare earth elements, is what’s left after aluminum is extracted from ore. And it is piling up. Globally, some 3 billion tons of red mud are now stored in massive waste ponds or dried mounds, making it one of the most abundant industrial wastes on the planet. Aluminum plants generate an additional 150 million tons each year.

Red mud has become trouble looking for a place to happen. In 2010, an earthen dam at one waste pond in Hungary gave way, unleashing a 2-meter-high wall of red mud that buried the town of Ajka, killing 10 people and giving 150 severe chemical burns. (See more on the dangers posed by waste dams.) Even when red mud remains contained, its extreme alkalinity can leach out, poison groundwater, and contaminate nearby rivers and ecosystems. Such liabilities, as well as growing regulatory pressure on industry to develop sustainable practices, have catalyzed global efforts to find ways to recycle and reuse red mud. Some researchers are developing ways to extract the valuable rare earth metals, whereas others turn the mud into cement or bricks.

“There is hope here,” says Yiannis Pontikes, a mechanical engineer at KU Leuven. But economic and marketing hurdles remain, and “the clock is ticking” as regulators consider new controls, says Efthymios Balomenos, a metallurgical engineer at the National Technical University of Athens. “At some point we will not be able to produce waste. So, there is an urgent need to make changes.”

Visualising sigma orbitals opens path to new understanding of surface chemistry

Photoemisssion orbital tomography extended beyond pi orbitals.


Figure

Experimentally-generated map of copper surface using photoemission orbital tomography (top left) and the projected densities of states of σ and π orbitals (top right). The bianthracene investigated in the study (bottom left) and maps of its σ orbitals (bottom middle, right)

A technique developed for imaging π orbitals during surface chemical reactions – photoemission orbital tomography – can also image σ orbitals as well. The researchers, who tested their discovery by answering a hitherto open question about the product of a reaction, believe the method could unravel chemical mechanisms in fields such as catalysis.

Cosmic Buckyballs Could Be The Source of Mysterious Infrared Light

Scientists may have just tracked down the source of some mysterious infrared glows detected emanating from stars and clouds of interstellar dust and gas.

These Unidentified Infrared Emission (UIE) bands have baffled scientists for decades; according to a theoretical new work, at least some of these bands can be produced by highly ionized buckminsterfullerene, more commonly known as buckyballs.

“I am extremely honored to have played a part in the astonishingly complex quantum chemistry investigations undertaken by Dr Sadjadi that have led to these very exciting results,” said astrophysicist Quentin Parker of Hong Kong University’s Laboratory for Space Research.

Research finds mechanically driven chemistry accelerates reactions in explosives

Scientists at the Lawrence Livermore National Laboratory (LLNL) Energetic Materials Center and Purdue University Materials Engineering Department have used simulations performed on the LLNL supercomputer Quartz to uncover a general mechanism that accelerates chemistry in detonating explosives critical to managing the nation’s nuclear stockpile. Their research is featured in the July 15 issue of the Journal of Physical Chemistry Letters.

Insensitive high explosives based on TATB (1,3,5-triamino-2,4,6-trinitrobenzene) offer enhanced safety properties over more conventional explosives, but physical explanations for these safety characteristics are not clear. Explosive initiation is understood to arise from hotspots that are formed when a shockwave interacts with microstructural defects such as pores. Ultrafast compression of pores leads to an intense localized spike in temperature, which accelerates chemical reactions needed to initiate burning and ultimately . Engineering models for insensitive high explosives—used to assess safety and performance—are based on the hotspot concept but have difficulty in describing a wide range of conditions, indicating missing physics in those models.

Using large-scale atomically resolved reactive molecular dynamics supercomputer simulations, the team aimed to directly compute how hotspots form and grow to better understand what causes them to react.

A new robotic submersible could unlock the mysteries of Greenland’s underwater glaciers

You’re in for a surprise.

Picture the ocean, impacted by climate change.

Rising sea levels, ocean acidification, melting of ice sheets, flooded coastlines, and shrinking fish stocks — the image is largely negative. For the longest time, the ocean has been portrayed as a victim of climate change, and rightly so. Ulf Riebesell, Professor of Biological Oceanography at the Geomar Helmholtz Centre for Ocean Research Kiel, has studied the effects of global warming on the ocean for nearly 15 years, warning the scientific community about the impacts of climate change on ocean life and biochemical cycles. countries aiming to achieve a climate-neutral world by mid-century, experts have decided to include the ocean to tackle climate change.

Researchers turn discarded CDs into flexible and stretchable biosensors

The CD was initially soaked in 40 mL of acetone for 1.5 minutes, releasing the metal layer by breaking down the polycarbonate substrate. The metal from the CD was easily harvested with polyimide tape, which also serves as the substrate layer in the new device integration to improve the mechanical durability and robustness of the thin metal film.

“When you pick up your hair on your clothes with sticky tape, that is essentially the same mechanism,” said Assistant Professor Ahyeon Koh, who led the research. “We loosen the layer of metals from the CD and then pick up that metal layer with tape, so we just peel it off. That thin layer is then processed and flex ible.”

Researchers created the sensors utilizing a commercially available Cricut cutter, an off-the-shelf machine for crafters that generally cut designs from materials like paper, vinyl, card stock, and iron-on transfers. The flexible circuits then would be removed and stuck onto a person. The whole fabrication process was completed in 20–30 minutes, without releasing toxic chemicals or needing expensive equipment, and it costs about $1.50 per device.