Toggle light / dark theme

Artificial intelligence designs batteries that charge faster than humans can imagine

An electrolyte moves ions – atoms that have been charged by either gaining or losing an electron – between the two electrodes in a battery. Lithium ions are created at the negative electrode, the anode, and flow to the cathode where they gain electrons. When a battery charges, the ions move back to the anode.

Battery innovations can take years to come to fruition because there are so many different chemicals involved in their production. Working out the ratio of chemicals and optimising them for peak use can be an arduous task.

However, when the research team used an automated arrangement of pumps, valves, vessels, and other lab equipment to mix together three potential solvents and one salt, and then fed those results through ‘Dragonfly’, they found that the AI delivered six solutions that out-performed an existing electrolyte solution.

New Discovery Means Parkinson’s Could Be Diagnosed With a Swab in Just 3 Minutes

When it comes to developing treatments and eventual cures for diseases, being able to diagnose a condition early and accurately makes a huge difference – and scientists have now developed a quick, reliable method of identifying people with Parkinson’s disease.

The test can be run in as little as 3 minutes after a skin swab has been taken. The swab is analyzed for changes in the chemical mix of sebum, a natural waxy oil produced by the skin that has previously been linked to Parkinson’s.

At the moment, there’s no conclusive test for Parkinson’s disease – specialists look at symptoms, medical history, the results of a lengthy physical examination, and in some cases, a brain scan to diagnose the condition.

Microscopic Robots in the Lungs Treat Bacterial Pneumonia in Mice

The last decade has brought a lot of attention to the use of microscopic robots (microrobots or nanorobots) for biomedical applications. Now, nanoengineers have developed microrobots that can swim around in the lungs and deliver medication to be used to treat bacterial pneumonia. A new study shows that the microrobots safely eliminated pneumonia-causing bacteria in the lungs of mice and resulted in 100% survival. By contrast, untreated mice all died within three days after infection.

The results are published Nature Materials in the paper, “Nanoparticle-modified microrobots for in vivo antibiotic delivery to treat acute bacterial pneumonia.

The microrobots are made using click chemistry to attach antibiotic-loaded neutrophil membrane-coated polymeric nanoparticles to natural microalgae. The hybrid microrobots could be used for the active delivery of antibiotics in the lungs in vivo.

Scientists make massive breakthrough in nuclear fusion as ‘ignition’ is finally achieved

Scientists managed to start the same chemical process that powers the Sun on August 8, 2021, by putting more electricity into a tiny gold capsule than the entire US electric system could handle.

It is extremely astonishing how the power of 192 laser beams sparked the same thermonuclear fire that fuels the Sun for a nanosecond.

The Sun produces energy by hurling hydrogen atoms together, generating helium in the process. We are now closer than ever to being able to harness chemical reactions with enough force to power the Sun. This is possible because fusion power technology has advanced.

Engineers discover new process for synthetic material growth, enabling soft robots that grow like plants

An interdisciplinary team of University of Minnesota Twin Cities scientists and engineers has developed a first-of-its-kind, plant-inspired extrusion process that enables synthetic material growth. The new approach will allow researchers to build better soft robots that can navigate hard-to-reach places, complicated terrain, and potentially areas within the human body.

The paper is published in the Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed, multidisciplinary, high-impact scientific journal.

“This is the first time these concepts have been fundamentally demonstrated,” said Chris Ellison, a lead author of the paper and professor in the University of Minnesota Twin Cities Department of Chemical Engineering and Materials Science. “Developing new ways of manufacturing are paramount for the competitiveness of our country and for bringing new products to people. On the robotic side, robots are being used more and more in dangerous, remote environments, and these are the kinds of areas where this work could have an impact.”

Scientists Have Built Artificial Neurons That Fully Mimic Human Brain Cells

Circa 2015 face_with_colon_three


Researchers have built the world’s first artificial neuron that’s capable of mimicking the function of an organic brain cell — including the ability to translate chemical signals into electrical impulses, and communicate with other human cells.

These artificial neurons are the size of a fingertip and contain no ‘living’ parts, but the team is working on shrinking them down so they can be implanted into humans. This could allow us to effectively replace damaged nerve cells and develop new treatments for neurological disorders, such as spinal cord injuries and Parkinson’s disease.

“Our artificial neuron is made of conductive polymers and it functions like a human neuron,” lead researcher Agneta Richter-Dahlfors from the Karolinska Institutet in Sweden said in a press release.

Scientists Created Artificial Neurons That Can Make a Venus Flytrap Snap

Crucially, they showed that the synapses were capable of Hebbian learning, the process by which the strength of the connection between two neurons increases or decreases based on activity. This is key to the way information is encoded into the brain, with the strengths of connections between neurons controlling the function of different brain circuits.

In biological neurons this ability to alter the strength of connections—known as plasticity—operates at two distinct timescales. Over shorter timescales, regular firing of the neuron leads to a buildup of ions that temporarily increase the ease with which signals pass across. In the long term though, regular activity can cause new receptors to grow at a synapse, resulting in more durable increases in the strength of the connection.

With the artificial synapses, short-term plasticity operates in much the same way due to a buildup of ions. But boosting the connection strength in the long term relies on using voltage pulses to essentially grow new material out of a soup of chemical precursors at the synapse, which increases its conductivity.

Chemical That Helps Cancer Grow And Spread By Disarming Immune System Identified

When cancer develops in the body, it begins with tumor cells that rapidly multiply and divide before spreading. But how are these nascent tumor cells able to evade the body’s immune system, which is designed to recognize and defend against such faulty cells? The answer to this long-unsolved topic may hold the key to more successful cancer treatments — medications that block tumors’ subversive moves and allow the immune system to do its job.

Researchers at Harvard Medical School have now discovered a mechanism through which tumor cells can disable the immune system, enabling the tumor to spread unchecked. The study, which was conducted primarily in mice and published today in Science, demonstrates that tumor cells with a certain mutation generate a chemical, known as a metabolite, that weakens adjacent immune cells, making them less capable of eliminating cancer cells.

The results underscore the crucial roles played by tumor metabolites in the deactivation of the immune system by malignancies. The findings also highlight the crucial part that the tumor microenvironment—the region around the tumor—plays in the development of cancer.

Chemists suggest using polymeric ionic liquids in supercapacitors

A team of researchers from HSE MIEM joined colleagues from the Institute of Non-Classical Chemistry in Leipzig to develop a theoretical model of a polymeric ionic liquid on a charged conductive electrode. They used approaches from polymer physics and theoretical electrochemistry to demonstrate the difference in the behavior of electrical differential capacitance of polymeric and ordinary ionic liquids for the first time. The results of the study were published in Physical Chemistry Chemical Physics.

Polymerized ionic liquids (PIL) are a relatively new class of materials with increasing applications in various fields, from the development of new electrolytes to the creation of solar cells. Unlike ordinary room temperature ionic liquids (liquid organic salts in which cations and anions move freely), in PILs, cations are usually linked in long polymeric chains, while anions move freely. In recent years, PILs have been used (along with ordinary ionic liquids) as a filling in the production of supercapacitors.

Supercapacitors are devices that store energy in an electric double layer on the surface of an electrode (as in electrodes of platinum, gold and carbon, for example). Compared, for example, to an accumulator, supercapacitors accumulate more energy and do so faster. The amount of energy a is able to accumulate is known as its ‘’.

/* */