Menu

Blog

Archive for the ‘chemistry’ category: Page 260

Jan 8, 2021

A Newfound Source of Cellular Order in the Chemistry of Life

Posted by in category: chemistry

Inside cells, droplets of biomolecules called condensates merge, divide and dissolve. Their dance may regulate vital processes.

Jan 8, 2021

Scientists develop a cheaper method that might help create fuels from plants

Posted by in categories: biological, chemistry, government, sustainability

Scientists have figured out a cheaper, more efficient way to conduct a chemical reaction at the heart of many biological processes, which may lead to better ways to create biofuels from plants.

Scientists around the world have been trying for years to create biofuels and other bioproducts more cheaply; this study, published today in the journal Scientific Reports, suggests that it is possible to do so.

“The process of converting sugar to alcohol has to be very efficient if you want to have the end product be competitive with ,” said Venkat Gopalan, a senior author on the paper and professor of chemistry and biochemistry at The Ohio State University. “The process of how to do that is well-established, but the cost makes it not competitive, even with significant government subsidies. This new development is likely to help lower the cost.”

Jan 8, 2021

New type of ultra-strong chemical bond discovered

Posted by in category: chemistry

It’s like the hydrogen bonds found in water, but way stronger.


Similar to the bonds found in water, but way more powerful, this new bond could offer deep insight into the true workings of chemical reactions.

Jan 8, 2021

Birds Have a Mysterious ‘Quantum Sense’. For The First Time, Scientists Saw It in Action

Posted by in categories: chemistry, quantum physics

Looks like living cells may have a lot more surprises to offer. 😃


Seeing our world through the eyes of a migratory bird would be a rather spooky experience. Something about their visual system allows them to ‘see’ our planet’s magnetic field, a clever trick of quantum physics and biochemistry that helps them navigate vast distances.

Now, for the first time ever, scientists from the University of Tokyo have directly observed a key reaction hypothesised to be behind birds’, and many other creatures’, talents for sensing the direction of the planet’s poles.

Continue reading “Birds Have a Mysterious ‘Quantum Sense’. For The First Time, Scientists Saw It in Action” »

Jan 6, 2021

Heat Treatment May Make Chemotherapy More Effective

Posted by in categories: biotech/medical, chemistry

Summary: Heating up cancer cells as they are being targeted with chemotherapy appears to be a highly effective way of killing them off.

Source: UCL

The study, published in the Journal of Materials Chemistry B, found that “loading” a chemotherapy drug on to tiny magnetic particles that can heat up the cancer cells at the same time as delivering the drug to them was up to 34% more effective at destroying the cancer cells than the chemotherapy drug without added heat.

Jan 6, 2021

Supercapacitors Challenge Batteries: Powerful Graphene Hybrid Material for Highly Efficient Energy Storage

Posted by in categories: chemistry, computing, mobile phones, sustainability, transportation

A team working with Roland Fischer, Professor of Inorganic and Metal-Organic Chemistry at the Technical University Munich (TUM) has developed a highly efficient supercapacitor. The basis of the energy storage device is a novel, powerful and also sustainable graphene hybrid material that has comparable performance data to currently utilized batteries.

Usually, energy storage is associated with batteries and accumulators that provide energy for electronic devices. However, in laptops, cameras, cellphones or vehicles, so-called supercapacitors are increasingly installed these days.

Unlike batteries they can quickly store large amounts of energy and put it out just as fast. If, for instance, a train brakes when entering the station, supercapacitors are storing the energy and provide it again when the train needs a lot of energy very quickly while starting up.

Jan 5, 2021

Magnetocuring Technology Could Point To A New Form Of 3D Printing

Posted by in category: chemistry

Researchers at Nanyang Technological University in Singapore have developed a new type of adhesive that could lead to a different form of 3D printing.

Magnetocuring

Continue reading “Magnetocuring Technology Could Point To A New Form Of 3D Printing” »

Jan 5, 2021

Researchers report new state of matter described as ‘liquid glass’

Posted by in categories: biological, chemistry, physics

Discovery of liquid glass sheds light on the old scientific problem of the glass transition: An interdisciplinary team of researchers from the University of Konstanz has uncovered a new state of matter, liquid glass, with previously unknown structural elements—new insights into the nature of glass and its transitions.

While glass is a truly ubiquitous material that we use on a daily basis, it also represents a major scientific conundrum. Contrary to what one might expect, the true nature of glass remains something of a mystery, with scientific inquiry into its chemical and physical properties still underway. In chemistry and physics, the term glass itself is a mutable concept: It includes the substance we know as window glass, but it may also refer to a range of other materials with properties that can be explained by reference to glass-like behavior, including, for instance, metals, plastics, proteins, and even biological cells.

While it may give the impression, glass is anything but conventionally solid. Typically, when a material transitions from a liquid to a the molecules line up to form a crystal pattern. In glass, this does not happen. Instead, the molecules are effectively frozen in place before crystallization happens. This strange and disordered state is characteristic of glasses across different systems and scientists are still trying to understand how exactly this metastable state forms.

Jan 5, 2021

This Drone Sniffs Out Odors With a Real Moth Antenna

Posted by in categories: chemistry, cyborgs, drones, neuroscience

“It’s all thanks to the sacrifice of the hawk moth Manduca sexta, which is an extremely sensitive smeller, like other moths. When a moth picks up a scent, like that of a flower or a potential mate, the odors bind to proteins inside the antennae, and these proteins in turn activate neurons dedicated to specific chemicals. That means the antennae are producing electrical signals that researchers can tap into. In order to create a sort of moth-drone cyborg, mechanical engineer Melanie Anderson of the University of Washington cold-anesthetized a hawk moth in a freezer before removing its antennae. Then she cut both ends off of a single antenna and attached each to an itty-bitty wire hooked up to an electrical circuit. “A lot like a heart monitor, which measures the electrical voltage that is produced by the heart when it beats, we measure the electrical signal produced by the antenna when it smells odor,” says Anderson, lead author on a recent paper in the journal Bioinspiration and Biomimetics describing the research. “And very similarly, the antenna will produce these spike-shaped pulses in response to patches of odor.””


Researchers slap a living antenna on a drone to give the machine an insanely keen sense of smell. Ladies and gentlemen, meet the “Smellicopter.”

Jan 4, 2021

Breakthrough for Healthcare, Agriculture, Energy: Artificial Intelligence Reveals Recipe for Building Artificial Proteins

Posted by in categories: biotech/medical, chemistry, food, information science, robotics/AI

Proteins are essential to cells, carrying out complex tasks and catalyzing chemical reactions. Scientists and engineers have long sought to harness this power by designing artificial proteins that can perform new tasks, like treat disease, capture carbon or harvest energy, but many of the processes designed to create such proteins are slow and complex, with a high failure rate.

In a breakthrough that could have implications across the healthcare, agriculture, and energy sectors, a team lead by researchers in the Pritzker School of Molecular Engineering at the University of Chicago has developed an artificial intelligence-led process that uses big data to design new proteins.

By developing machine-learning models that can review protein information culled from genome databases, the researchers found relatively simple design rules for building artificial proteins. When the team constructed these artificial proteins in the lab, they found that they performed chemical processes so well that they rivaled those found in nature.