Toggle light / dark theme

Scientists Pump Up Lab-Grown Muscles for Robots With a New Magnetic Workout

Unfortunately, these precise cell arrangements are also why artificial muscles are difficult to recreate in the lab. Despite being soft, squishy, and easily damaged, our muscles can perform incredible feats—adapt to heavy loads, sense the outside world, and rebuild after injury. A main reason for these superpowers is alignment—that is, how muscle cells orient to form stretchy fibers.

Now, a new study suggests that the solution to growing better lab-grown muscles may be magnets. Led by Dr. Ritu Raman at the Massachusetts Institute of Technology (MIT), scientists developed a magnetic hydrogel “sandwich” that controls muscle cell orientation in a lab dish. By changing the position of the magnets, the muscle cells aligned into fibers that contracted in synchrony as if they were inside a body.

The whole endeavor sounds rather Frankenstein. But lab-grown tissues could one day be grafted into people with heavily damaged muscles—either from inherited diseases or traumatic injuries—and restore their ability to navigate the world freely. Synthetic muscles could also coat robots, providing them with human-like senses, flexible motor control, and the ability to heal after inevitable scratches and scrapes.

TruDiagnostic and Harvard announce new multi omic informed biological aging clock

A study published today by scientists from Harvard University and epigenetic research company TruDiagnostic has shed light on the reasons why our bodies are aging on a cellular level, laying the foundations for medical based treatment options to reduce the risk of age-related death and disease in highly targeted ways.

Longevity. Technology: Age is the number one risk factor for most chronic diseases and death across the world. Epigenetics (or the way our genes are put to use throughout our bodies) has emerged as a crucial method of evaluating health, and while previous DNA methylation clocks could determine how advanced one’s body has aged, they have not yet been able to provide information to the reasons why someone might have accelerated or decelerated aging outcomes.

“In our research, we set out to create the best method to quantify the biological aging process. However, aging is extremely complex,” explains Harvard Medical School Associate Professor Dr Jessica Lasky-Su. “To solve this issue of complexity, our approach was to gather data across multiple sources of information. We chose to do this by building one of the most robust aging datasets in the world by quantifying patients’ proteomics, metabolomics, clinical histories and DNA methylation.”

New Biomarker Predicts Whether Neurons Will Regenerate

Neurons, the main cells that make up our brain and spinal cord, are among the slowest cells to regenerate after an injury, and many neurons fail to regenerate entirely. While scientists have made progress in understanding neuronal regeneration, it remains unknown why some neurons regenerate and others do not.

Using single-cell RNA sequencing, a method that determines which genes are activated in individual cells, researchers from University of California San Diego School of Medicine have identified a new biomarker that can be used to predict whether or not neurons will regenerate after an injury. Testing their discovery in mice, they found that the biomarker was consistently reliable in… More.


Researchers from University of California San Diego have identified a new biomarker that can predict whether or not neurons will regenerate after an injury. The findings could help scientists develop regenerative therapies for spinal cord injuries and other neurological conditions.

Stanford scientist, after decades of study, concludes: We don’t have free will

Before epilepsy was understood to be a neurological condition, people believed it was caused by the moon, or by phlegm in the brain. They condemned seizures as evidence of witchcraft or demonic possession, and killed or castrated sufferers to prevent them from passing tainted blood to a new generation.

Today we know epilepsy is a disease. By and large, it’s accepted that a person who causes a fatal traffic accident while in the grip of a seizure should not be charged with murder.

That’s good, says Stanford University neurobiologist Robert Sapolsky. That’s progress. But there’s still a long way to go.

After more than 40 years studying humans and other primates, Sapolsky has reached the… More.


You may think you chose to read this, but Stanford scientist Robert Sapolsky would disagree. He says virtually all human behavior is beyond our conscious control.

Gene Expression Pattern Predicts Which Neurons Will Regenerate after Injury

Researchers from University of California San Diego School of Medicine have used single-cell RNA sequencing (scRNA-seq) to identify a pattern of gene expression that can be used to predict whether or not neurons will regenerate after an injury. Tests in mice showed that this “Regeneration Classifier” was consistently reliable in predicting the regeneration potential of neurons across the nervous system and at different developmental stages. Conditional gene deletion then validated a role for NFE2L2 (or NRF2), a master regulator of antioxidant response, in corticospinal tract regeneration.

“Single-cell sequencing technology is helping us look at the biology of neurons in much more detail than has ever been possible, and this study really demonstrates that capability,” said senior author Binhai Zheng, PhD, professor in the Department of Neurosciences at UC San Diego School of Medicine. “What we’ve discovered here could be just the beginning of a new generation of sophisticated biomarkers based on single-cell data.” Zheng and colleagues reported on their findings in Neuron, in a paper titled “Deep scRNA sequencing reveals a broadly applicable Regeneration Classifier and implicates antioxidant response in corticospinal axon regeneration.” In their paper the team concluded, “Our data demonstrate a universal transcriptomic signature underlying the regenerative potential of vastly different neuronalpopulations and illustrate that deep sequencing of only hundreds of phenotypically identified neurons has the power to advance regenerative biology.”

Neurons are among the slowest cells to regenerate after an injury. While scientists have made progress in understanding neuronal regeneration, it remains unknown why some neurons regenerate and others do not.

Creating Sapient Technology and Cyborg Rights Should Happen Soon

Here’s my latest Opinion piece just out for Newsweek…focusing on cyborg rights.


Over the past half-century, the microprocessor’s capacity has doubled approximately every 18–24 months, and some experts predict that by 2030, machine intelligence could surpass human capabilities. The question then arises: When machines reach human-level intelligence, should they be granted protection and rights? Will they desire and perhaps even demand such rights?

Beyond advancements in microprocessors, we’re witnessing breakthroughs in genetic editing, stem cells, and 3D bioprinting, all which also hold the potential to help create cyborg entities displaying consciousness and intelligence. Notably, Yale University’s experiments stimulating dead pig brains have ignited debates in the animal rights realm, raising questions about the ethical implications of reviving consciousness.

Amid these emerging scientific frontiers, a void in ethical guidelines exists, akin to the Wild West of the impending cyborg age. To address these ethical challenges, a slew of futurist-oriented bills of rights have emerged in the last decade. One of the most prominent is the Transhumanist Bill of Rights, which is in its third revision through crowdsourcing and was published verbatim by Wired in 2018.

These cyborg bills encompass a broad array of protections, including safeguards for thinking robots, gender recognition for virtual intelligences, regulations for genetically engineered sapient beings, and the defense of freedoms for biohackers modifying their bodies. Some also incorporate tech-driven rules to combat environmental threats like asteroids, pandemics, and nuclear war.

Scientists develop deep learning-based biosensing platform to better count viral particles

Recent studies have found that Gires-Tournois (GT) biosensors, a type of nanophotonic resonator, can detect minuscule virus particles and produce colorful micrographs (images taken through a microscope) of viral loads. But they suffer from visual artifacts and non-reproducibility, limiting their utilization.

In a recent breakthrough, an international team of researchers, led by Professor Young Min Song from the School of Electrical Engineering and Computer Science at Gwangju Institute of Science and Technology in Korea, has leveraged artificial intelligence (AI) to overcome this problem. Their work was published in Nano Today.

Rapid and on-site diagnostic technologies for identifying and quantifying viruses are essential for planning treatment strategies for infected patients and preventing further spread of the infection. The COVID-19 pandemic has highlighted the need for accurate yet decentralized that do not involve complex and time-consuming processes needed for conventional laboratory-based tests.

IGF 2023 WS #356 Encryption’s Critical Role in Safeguarding Human Rights

Two types of technologies could change the privacy afforded in encrypted messages, and changes to this space could impact all of us.

On October 9, I moderated a panel on encryption, privacy policy, and human rights at the United Nations’s annual Internet Governance Forum. I shared the stage with some fabulous panelists including Roger Dingledine, the director of the Tor Project; Sharon Polsky, the president of the Privacy and Access Council of Canada; and Rand Hammoud, a campaigner at Access Now, a human rights advocacy organization. All strongly believe in and champion the protection of encryption.

I want to tell you about one thing that came up in our conversation: efforts to, in some way, monitor encrypted messages.

Policy proposals have been popping up around the world (like in Australia, India, and, most recently, the UK) that call for tech companies to build in ways to gain information about encrypted messages, including through back-door access. There have also been efforts to increase moderation and safety on encrypted messaging apps, like Signal and Telegram, to try to prevent the spread of abusive content, like child sexual abuse material, criminal networking, and drug trafficking.

Not surprisingly, advocates for encryption are generally opposed to these sorts of proposals as they weaken the level of user privacy that’s currently guaranteed by end-to-end encryption.

In my prep work before the panel, and then in our conversation, I learned about some new cryptographic technologies that might allow for some content moderation, as well as increased enforcement of platform policies and laws, all *without* breaking encryption. These are sort-of fringe technologies right now, mainly still in the research phase. Though they are being developed in several different flavors, most of these technologies ostensibly enable algorithms to evaluate messages or patterns in their metadata to flag problematic material without having to break encryption or reveal the content of the messages.

Canalys Newsroom — North American smartphone shipments to fall 12% in 2023 despite premium segment strength

Smartphone sales have had their worst quarterly performance in over a decade, a fact that raises two big questions. Have the latest models finally bored the market with mere incremental improvements? And if they have, what will the next form factor (and function) be? Today a deep tech startup called Xpanceo is announcing $40 million in funding from a single investor, Opportunity Ventures in Hong Kong, to pursue its take on one of the possible answers to that question: computing devices in the form of smart contact lenses.

The company wants to make tech more simple, and it believes the way to do that is to make it seamless and more connected to how we operate every day. “All current computers will be obsolete [because] they’re not interchangeable,” said Roman Axelrod, who co-founded the startup with material scientist and physicist Valentyn S. Volkov. “We are enslaved by gadgets.”

With a focus on new materials and moving away from silicon-based processing and towards new approaches to using optoelectronics, Xpanceo’s modest ambition, Axelrod said in an interview, is to “merge all the gadgets into one, to provide humanity with a gadget with an infinite screen. What we aim for is to create the next generation of computing.”

Xpanceo was founded in 2021 and is based out Dubai, and before now it has been bootstrapped. Its team of more 50 scientists and engineers has mainly, up to now, been working on different prototypes of lenses and all of the hard work that goes into that. The move away from silicon and to optoelectronics, for example, has driven a new need for materials that can emit and read light that are ever-smaller, Volkov said. The company has likened developments of 2D materials like graphene to what it is pursuing with new materials for contact lenses.

“We have kind of developed our own niche [in 2D materials] and now we use this knowledge as a backbone for our contact lens prototypes,” Volkov said in an interview.

Alongside this, the company has developed an AI platform to help develop its frameworks. It describes “neural interfacing” as the technique it will use to give wearers of its lenses full control over applications without them needing to use “awkward” eye movements or extra controllers. (Some prototypes of other smart or connected lenses involve users lowering eyelids to change functions, for example.)