Toggle light / dark theme

New study is first to find brain hemorrhage cause other than injured blood vessels

A first-of-its-kind study led by the University of California, Irvine has revealed a new culprit in the formation of brain hemorrhages that does not involve injury to the blood vessels, as previously believed. Researchers discovered that interactions between aged red blood cells and brain capillaries can lead to cerebral microbleeds, offering deeper insights into how they occur and identifying potential new therapeutic targets for treatment and prevention.

The findings, published online in the Journal of Neuroinflammation, describe how the team was able to watch the process by which stall in the brain capillaries and then observe how the hemorrhage happens. Cerebral microbleeds are associated with a variety of conditions that occur at higher rates in older adults, including hypertension, Alzheimer’s disease and ischemic stroke.

“We have previously explored this issue in , but our current study is significant in expanding our understanding of the mechanism by which cerebral microbleeds develop,” said co-corresponding author Dr. Mark Fisher, professor of neurology in UCI’s School of Medicine. “Our findings may have profound clinical implications, as we identified a link between red blood cell damage and cerebral hemorrhages that occurs at the capillary level.”

Scary and Deadly Disease in Dogs Found in New Hampshire: One of Three States With Major Deaths

As a dog owner of two little muppets, this is serious, scary, and deadly.

According to a KSLTV article, “veterinary laboratories in several states are investigating an unusual respiratory illness in dogs, and encouraging people to take basic precautions to keep their pets healthy as veterinarians try to pin down what’s making the animals sick.”

The “outbreak” of this respiratory illness is currently in three states: Oregon, Colorado, and New Hampshire. Research is being done right now in the Granite State.

Humans Make Better Cancer Treatment Decisions Than AI, Study Finds

Treating cancer is becoming increasingly complex, but also offers more and more possibilities. After all, the better a tumor’s biology and genetic features are understood, the more treatment approaches there are. To be able to offer patients personalized therapies tailored to their disease, laborious and time-consuming analysis and interpretation of various data is required. Researchers at Charité – Universitätsmedizin Berlin and Humboldt-Universität zu Berlin have now studied whether generative artificial intelligence (AI) tools such as ChatGPT can help with this step. This is one of many projects at Charité analyzing the opportunities unlocked by AI in patient care.

If the body can no longer repair certain genetic mutations itself, cells begin to grow unchecked, producing a tumor. The crucial factor in this phenomenon is an imbalance of growth-inducing and growth-inhibiting factors, which can result from changes in oncogenes – genes with the potential to cause cancer – for example. Precision oncology, a specialized field of personalized medicine, leverages this knowledge by using specific treatments such as low-molecular weight inhibitors and antibodies to target and disable hyperactive oncogenes.

Researchers use quantum computing to predict gene relationships

In a new multidisciplinary study, researchers at Texas A&M University showed how quantum computing—a new kind of computing that can process additional types of data—can assist with genetic research and used it to discover new links between genes that scientists were previously unable to detect.

Their project used the new computing technology to map gene regulatory networks (GRNs), which provide information about how can cause each other to activate or deactivate.

As the team published in npj Quantum Information, will help scientists more accurately predict relationships between genes, which could have huge implications for both animal and human medicine.

GLS1 inhibitor selectively eliminates senescent cells, ameliorates age-associated disorders

Year 2021 face_with_colon_three


Senescent cells accumulate in organs during aging, promote tissue dysfunction, and cause numerous aging-related diseases like cancer. The cells arise through a process called “cellular senescence,” a permanent cell cycle arrest resulting from multiple stresses.

A collaborative research group led by Professor Makoto Nakanishi of the Institute of Medical Science, The University of Tokyo (IMSUT), and co-researchers have identified an inhibitor of the glutamate metabolic enzyme GLS1so that its administration selectively eliminates senescent cells in vivo.

They confirmed that the GLS1 inhibitor eliminated senescent cells from various organs and tissues in aged mice, ameliorating age-associated tissue dysfunction and the symptoms of obese diabetes, arteriosclerosis, and NASH. The results of this research were published in “Science” on January 15, 2021.

NEW STUDY: Discovery of chemical means to reverse aging and restore cellular function

On July 12, 2023, a new research paper was published in Aging, titled, “Chemically induced reprogramming to reverse cellular aging.”

BUFFALO, NY– July 12, 2023 – In a groundbreaking study, researchers have unlocked a new frontier in the fight against aging and age-related diseases. The study, conducted by a team of scientists at Harvard Medical School, has published the first chemical approach to reprogram cells to a younger state. Previously, this was only achievable using a powerful gene therapy.

On July 12, 2023, researchers Jae-Hyun Yang, Christopher A. Petty, Thomas Dixon-McDougall, Maria Vina Lopez, Alexander Tyshkovskiy, Sun Maybury-Lewis, Xiao Tian, Nabilah Ibrahim, Zhili Chen, Patrick T. Griffin, Matthew Arnold, Jien Li, Oswaldo A. Martinez, Alexander Behn, Ryan Rogers-Hammond, Suzanne Angeli, Vadim N. Gladyshev, and David A. Sinclair from Harvard Medical School, University of Maine and Massachusetts Institute of Technology (MIT) published a new research paper in Aging, titled, “Chemically induced reprogramming to reverse cellular aging.”

AI system self-organizes to develop features of brains of complex organisms

Cambridge scientists have shown that placing physical constraints on an artificially-intelligent system—in much the same way that the human brain has to develop and operate within physical and biological constraints—allows it to develop features of the brains of complex organisms in order to solve tasks.

As such as the organize themselves and make connections, they have to balance competing demands. For example, energy and resources are needed to grow and sustain the network in , while at the same time optimizing the network for . This trade-off shapes all brains within and across species, which may help explain why many brains converge on similar organizational solutions.

Jascha Achterberg, a Gates Scholar from the Medical Research Council Cognition and Brain Sciences Unit (MRC CBSU) at the University of Cambridge said, “Not only is the brain great at solving , it does so while using very little energy. In our new work we show that considering the brain’s problem-solving abilities alongside its goal of spending as few resources as possible can help us understand why brains look like they do.”

This 3D printer can watch itself fabricate objects

With 3D inkjet printing systems, engineers can fabricate hybrid structures that have soft and rigid components, like robotic grippers that are strong enough to grasp heavy objects but soft enough to interact safely with humans.

These multimaterial 3D printing systems utilize thousands of nozzles to deposit tiny droplets of resin, which are smoothed with a scraper or roller and cured with UV light. But the smoothing process could squish or smear resins that cure slowly, limiting the types of materials that can be used.

Researchers from MIT, the MIT spinout Inkbit, and ETH Zurich have developed a new 3D inkjet printing system that works with a much wider range of materials. Their printer utilizes computer vision to automatically scan the 3D printing surface and adjust the amount of resin each nozzle deposits in real time to ensure no areas have too much or too little material.

/* */