Toggle light / dark theme

Cancer is a deadly disease with multiple risk factors. Risk factors are dependent on the type of cancer and each one is treated differently. The heterogeneity of various cancers is the main reason there is no cure. Additionally, cancer evolves and can also come back after being treated and lying dormant for years. Therefore, it is very difficult to find an effective treatment that provides high quality of life for patients.

One aggressive cancer that is difficult to treat includes glioblastoma. This brain tumor is fast-growing and results in the form of many different symptoms including headache, vomiting, and seizures. Unfortunately, there is not much known on glioblastoma. The cause of this disease is unclear and treatment options are limited. This tumor stays in the brain and does not metastasize, but because of its location, glioblastoma is hard to treat. Currently, treatment options include radiation, chemotherapy, and surgery with limited success. Even immunotherapy, a more recent treatment, which activates the body’s immune system to kill the tumor has limited efficacy in the brain.

A group of researchers led by Dr. Robert Prins at the David Geffen School of Medicine at University of California Los Angeles (UCLA) recently published an article in the Journal of Clinical Investigation (JCI) describing new research that could help overcome obstacles to glioblastoma treatment. More specifically, Prins and colleagues have reported why glioblastoma that originates from other parts of the body respond better to immunotherapy compared to glioblastoma that originates in the brain.

Our immune system is made of various cell types responsible for fighting pathogens and disease that enter the body. There are two distinct arms or responses of the immune system: innate and adaptive. The innate immune response is the first line of defense that includes immune cells that are not specific to the invading pathogen, but recognize it is foreign and tries to kill it. Cells that are included in this response are neutrophils, basophils, eosinophils, monocytes, macrophages, mast cells, and natural killer cells. The adaptive immune response is the second line of defense and made up of cells that are more specific to the invading pathogen. The adaptive immune system includes dendritic cells, T cells, and B cells. T cells specifically have different subsets and function differently to effectively kill invading pathogens.

Although scientists know a lot about the immune system, there is still much unknown about how the cells that make up these immune responses completely function. One unclear phenomenon includes the mechanism by which immune cells know which way to travel to the site of infection. Researchers lead by Drs. Michael Sixt and Edouard Hannezo at the Institute of Science and Technology Austria (ISTA) recently reported in Science Immunology that immune cells generate their own path to navigate environments throughout the body.

One particular immune cell type, dendritic cells, are not exclusively part of the adaptive immune system. They work to bridge the innate and adaptive immune systems to help cohesively deliver a response that will efficiently kill the pathogen. More specifically, dendritic cells detect pathogens and then travel to the lymph nodes to coordinate a systemic attack. Dendritic cells move according to chemokines, or small proteins that help cells migrate to specific locations. Previously, it was believed that the chemokines produce a gradient and it was this gradient that allowed cells to migrate to specific locations. However, Sixt, Hannezo, and colleagues reported that this gradient might not be the only way for migrating cells.

The Death of Death is an international bestseller by José Cordeiro and David Wood that claims that “death will be optional by 2045” – or even earlier, if more public and private funds are invested in rejuvenation technologies.

Longevity. Technology: Already available in more than 10 languages, the book provides insight into recent exponential advances in AI, tissue regeneration, stem cell treatment, organ printing, cryopreservation and genetic therapies that, say the authors, offer a realistic chance to solve the problem of the aging of the human body for the first time in human history. In fact, the book’s subtitle is The Scientific Possibility of Physical Immortality and its Moral Defense.

Given that until relatively recently, just mentioning the concept of ‘biological immortality’ was enough to raise eyebrows and with most of the opinion that it should be filed away under ‘science fiction’ or ‘charlatanism’. However, longevity science is advancing at an incredible pace and today there are people who no longer wonder if immortality is possible, but when it will be a reality. We sat down with José Luis Corderio PhD to find out more.

A new study reveals the brain circuit that controls sex drive in male mice. Scientists believe this finding could apply to humans and may allow them to manipulate the male libido.

Scientists at Stanford Medicine have identified the exact part of the brain that controls sex drive in mice. It is possible that the same part of the human brain also regulates libido in men.

“We’ve singled out a circuit in male mammals’ brains that controls sexual recognition, libido, and mating behavior and pleasure,” said Nirao Shah, one of the senior researchers and a professor of behavioral sciences at Stanford.

The study reveals a strong association between gut microbial carbohydrate metabolism and insulin resistance, pointing to gut microbes as a key player in metabolic syndrome and type 2 diabetes. Targeting these microbial activities could offer a new therapeutic pathway for improving insulin resistance and overall metabolic health.

Like biomarker tests, germline testing can help doctors determine the best treatments for patients, but such testing may also help identify people whose family members should be offered testing for potential cancer-causing gene changes.

Guidelines recommend that germline testing be offered to all people with male breast cancer, ovarian cancer, pancreatic cancer, and metastatic prostate cancer. For other cancers with lower likelihood of harmful inherited mutations, recommendations for germline testing vary.

But new findings from a study that is examining the extent of testing for germline mutations among people diagnosed with cancer in California and Georgia between 2013 and 2019 found that germline testing rates are still low. Among the more than 1.3 million people in the study, only about 93,000, or 6.8%, underwent germline genetic testing through March 31, 2021, according to findings published July 3 in JAMA.

A new cancer therapy developed by Purdue University researchers attacks tumors by tricking cancer cells into absorbing a snippet of RNA that naturally blocks cell division. As reported in Oncogene, tumors treated with the new therapy did not increase in size over the course of a 21-day study, while untreated tumors tripled in size over the same time period. The paper is tiled “A first-in-class fully modified version of miR-34a with outstanding stability, activity, and anti-tumor efficacy.”

Cancer can begin almost anywhere in the human body. It is characterized by cells that divide uncontrollably and that may be able to ignore signals to die or stop dividing, and even evade the . The therapy, tested in mouse models, combines a delivery system that targets cancer cells with a specially modified version of microRNA-34a, a molecule that acts “like the brakes on a car,” slowing or stopping cell division, said Andrea Kasinski, lead author and the William and Patty Miller Associate Professor of biological sciences at Purdue University.

In addition to slowing or reversing , the targeted microRNA-34a strongly suppressed the activity of at least three genes—MET, CD44 and AXL—known to drive cancer and resistance to other cancer therapies, for at least 120 hours. The results indicate that the patent-pending therapy, the newest iteration in more than 15 years of work targeting microRNA to destroy cancer, could be effective on its own and in combination with existing drugs when used against cancers that have built .