Toggle light / dark theme

Vision is one of the most crucial human senses, yet more than 300 million people worldwide are at risk of vision loss due to various retinal diseases. While recent advancements in retinal disease treatments have successfully slowed disease progression, no effective therapy has been developed to restore already lost vision—until now.

KAIST researchers led by Professor Jinwoo Kim from the Department of Biological Sciences have successfully developed a novel drug to restore vision through retinal nerve regeneration. The research is published in the journal Nature Communications. The study was co-authored by Dr. Eun Jung Lee of Celliaz Inc. and Museong Kim, a Ph.D. candidate at KAIST, as joint first authors.

The research team successfully induced neural regeneration and vision recovery in a disease-model mouse by administering a compound that blocks the PROX1 (Prospero Homeobox 1) protein, which suppresses retinal regeneration. The effect lasted for more than six months.

Statistics suggest that the size of families in many countries is shrinking and a growing number of parents worldwide either willingly or unwillingly end up only having one child. While many psychology studies have explored the differences between individuals who have siblings and those who don’t, the effects of not having any brothers or sisters on people’s brains and behavior are not yet fully understood.

Past research has yielded varying and sometimes contradictory results, which sometimes hinted at negative effects of being an only child and other times highlighted its positive implications. In addition, these negative and positive effects were found to be inconsistent across studies, with some studies suggesting that only children tend to do better at school, are more pro-social and less problematic, while others showed the opposite.

Researchers at Tianjin Medical University General Hospital and other institutes in China recently carried out a study aimed at better understanding how being an only child affects people’s brain and behavior during adulthood. Their findings, published in Nature Human Behaviour, highlight specific patterns in the brain’s development and activity, as well as behavioral tendencies, that are commonly observed in adults who grew up without siblings.

Microplastics and much smaller nanoplastics enter the human body in various ways, for example through food or the air we breathe. A large proportion is excreted, but a certain amount remains in organs, blood, and other body fluids.

In the FFG bridge project Nano-VISION, which was launched two years ago together with the start-up BRAVE Analytics, a team led by Harald Fitzek from the Institute of Electron Microscopy and Nanoanalysis at Graz University of Technology (TU Graz) and an ophthalmologist from Graz addressed the question of whether nanoplastics also play a role in ophthalmology.

The project partners have now been able to develop a method for detecting and quantifying nanoplastics in transparent body fluids and determining their chemical composition. The research is published in the journal Analytical Chemistry.

Most cells in the human body each contain about six feet of DNA. Yet the nucleus, where DNA is coiled, is no larger than a single speck of dust. Despite its density, DNA is not a tangled ball of yarn. It is organized into intricate layers of loops that fold and unfold in response to cues from the cell.

Scientists know that the three-dimensional shape of DNA is important. This long helical thread is peppered with genes that are translated into proteins to drive cellular activity. And the structure of the —those layers of loops—determines which genes are active at any given time.

How the three-dimensional structure of the genome is maintained, however, is less clear. Structural changes and abnormalities are associated with many diseases, such as cancer and developmental disorders. Identifying what controls genome structure could yield targets for treatment.

CD36 is identified as the membrane receptor for cellular uptake of PROTACs and other eRo5/bRo5 molecules. A chemical endocytic medicinal chemistry strategy to enhance the binding of PROTACs to CD36 improved the uptake and potency of PROTACs without sacrificing solubility or stability. This strategy could improve the bioavailability and potency of diverse endocytic drugs.

The 2024 WHO BPPL is a key tool for prioritising research and development investments and informing global public health policies to combat AMR. Gram-negative bacteria and rifampicin-resistant M tuberculosis remain critical priority pathogens, underscoring their persistent threat and the limitations of the current antibacterial pipeline. Focused efforts and sustained investments in novel antibacterials are needed to address AMR priority pathogens, which include high-burden antibiotic-resistant bacteria such as Salmonella and Shigella spp, N gonorrhoeae, and S aureus.

Background and ObjectivesDespite the absence of acute lesion activity in multiple sclerosis (MS), chronic neurodegeneration continues to progress, and a potential underlying mechanism could be the kynurenine pathway (KP). Prolonged activation of the KP…