Toggle light / dark theme

Technology As A Force For Good In People’s Lives — Dr. Emre Ozcan, PhD, VP, Global Head of Digital Health & Walid Mehanna, Group Data Officer And Senior Vice President, Merck KGaA, Darmstadt, Germany.


EPISODE DISCLAIMER — At any time during this episode when anyone says Merck, in any context, it shall always be referring to Merck KGaA, Darmstadt, Germany.

Dr. Emre Ozcan, Ph.D. is VP, Global Head of Digital Health, at Merck KGaA, Darmstadt, Germany (https://www.emdgroup.com/en), where he brings 15+ years experience in biopharma, med-tech and healthcare consulting with experience across strategy, research, marketing, and operations in several therapeutic areas. In his current role, he holds the accountability for the design and end-to-end delivery of digital health solutions to support Merck KGaA, Darmstadt, Germany franchise strategies and shape the architecture of the offering “around the drug” including devices and diagnostics.

EPISODE DISCLAIMER — The views and opinions expressed in this episode are those of the guest and do not necessarily reflect the views or positions of any entities they represent.

Dr. Devi SenGupta, MD, MPhil, is Executive Director of Clinical Development at Gilead Sciences (https://www.gilead.com/), where she leads the company’s HIV cure development program and during her time at the company has led multiple HIV treatment and cure studies. As head of the HIV cure program, she provides strategic direction for cross-functional internal teams and external multi-stakeholder collaborations developing combination approaches aimed at achieving long-term HIV remission.

Before joining Gilead in 2015, Dr. SenGupta was a physician scientist leading translational HIV immunology research as an Assistant Professor at the University of California, San Francisco (UCSF). Her NIH-funded program focused on identifying novel strategies to enhance cellular immunity against HIV.

Dr. SenGupta received her Bachelor of Arts in psychology and biology at Harvard University, MPhil. in neuropsychology at Cambridge University, UK, and MD at the University of Washington School of Medicine. She completed her internal medicine residency at Johns Hopkins Hospital and infectious diseases fellowship at UCSF.

Northwestern investigators have demonstrated that fine-tuning DNA interaction strength can improve colloidal crystal engineering to enhance their use in creating an array of functional nanomaterials, according to a recent study published in ACS Nano.

Chad Mirkin, Ph.D., professor of Medicine in the Division of Hematology and Oncology, the George B. Rathmann Professor of Chemistry at Northwestern’s Weinberg College of Arts and Sciences, and director of the International Institute for Nanotechnology, was senior author of the study.

Colloidal crystal engineering with DNA involves modifying nanoparticles into programmable atom equivalents, or “PAEs,” which are used to form that can then be used for designing programmable, synthetic DNA sequences.

But Dituri isn’t just settling for the record and resurfacing: He plans to stay at the lodge until June 9, when he reaches 100 days and completes an underwater mission dubbed Project Neptune 100.

The mission combines medical and ocean research along with educational outreach and was organized by the Marine Resources Development Foundation, owner of the habitat.

“The record is a small bump and I really appreciate it,” said Dituri, a University of South Florida educator who holds a doctorate in biomedical engineering and is a retired U.S. Naval officer. “I’m honored to have it, but we still have more science to do.”

Year 2016 Although some have have thought regeneration of limbs improbable actually this can become a reality due to amphibians limb regeneration then using crispr we can get deadpool like abilities for all. 😗😁


Also known as Wade Wilson, Deadpool is a sarcastic, eccentric smart-ass, way more of an antihero than your traditional superhero.

Deadpool acquires his powers when he seeks out the help of a creepy, top-secret company to help cure his cancer with a dangerous experimental “treatment” designed to activate mutant genes. (Incidentally, it’s the same creepy, top-secret company that gave Wolverine his adamantium skeleton and claws.)

Scientists with the Human Pangenome Reference Consortium have made groundbreaking progress in characterizing the fraction of human DNA that varies between individuals. They have assembled genomic sequences of 47 people from around the world into a so-called pangenome in which more than 99 percent of each sequence is rendered with high accuracy.

For two decades, scientists have relied on the human reference genome as a standard to compare against other genetic data. Thanks to this reference genome, it was possible to identify genes implicated in specific diseases and trace the evolution of human traits, among other things.

However, it has always been a flawed tool: 70% of its data came from a single man of predominantly African-European background whose DNA was sequenced during the Human Genome Project. Hence, it can reveal very little about individuals on this planet who are different from each other, creating an inherent bias in biomedical data believed to be responsible for some of the health disparities affecting patients today.

Improved, innovative strategies are needed for the prevention and promotion of recovery from mental illness as these disorders leading cause of disability worldwide. This article will review the evidence linking dietary pattern to brain-based illnesses and provide an overview of the mechanisms that underlie the association between brain health and the food we eat. Considerations for dietary intervention will be discussed including encouraging a shift towards a traditional or whole foods dietary pattern.


Robert, a 43-year-old married man who presents with irritability and a low mood for two months. He has a history of attention deficit disorder, first diagnosed two years ago, and is currently treated with Vyvanse 70 mg. While his focus and work function are improved, he reports low appetite, fatigue, and difficulty sleeping. He notes that he tends to be quite irritable during mealtimes to the extent that his wife has asked him to stay at work past dinnertime to “stay out of the way.” He feels guilty and, concerned about not connecting emotionally to his young children ages 1 and 3. Further history and medical workup reveal no substance use, no active medical issues, and blood work reveals no abnormalities.

The evidence is growing: food choice is strongly implicated in mental health risk. In cases like Robert’s, a food history is a vital piece of data, both in assessing low appetite as a possible medication side effect, or as a symptom of depression. Furthermore, a food history is imperative to understand whether targeted dietary recommendations could assist in his recovery.

An approach to consider for patients with mental health symptoms is to offer counseling on lifestyle interventions, such as diet.1 Physicians often feel ill-equipped to discuss diet due to lack of training, limited time, and a poor reimbursement structure. Physician uncertainty is likely exacerbated by the wide variety of specific dietary recommendations and dietary “tribes” that exist in our society today. Over 2,000 years ago, Hippocrates said, “let thy food be thy medicine and thy medicine be thy food.”2 The evidence base is increasing that we should re-examine his counsel, as the effect of good food has profound implications for brain health.

Led by researchers from NYU Grossman School of Medicine and University of Szeged in Hungary, a new study in mice and rats found that restoring certain signals in a brain region that processes smells countered depression.

Publishing in the journal Neuron online May 9, the study results revolve around nerve cells (neurons), which “fire”—or emit —to transmit information. Researchers in recent years discovered that effective communication between brain regions requires groups of neurons to synchronize their activity patterns in repetitive periods (oscillations) of joint silence followed by joint activity.

One such rhythm, called “gamma,” repeats about 30 times or more in a second, and is an important timing pattern for the encoding of complex information, potentially including emotions.

In a major advance, scientists have assembled genomic sequences of 47 people from diverse backgrounds to create a pangenome, which offers a more accurate representation of human genetic diversity than the existing reference genome. This new pangenome will help researchers refine their understanding of the link between genes and diseases, and could ultimately help address health disparities.

For more than 20 years, scientists have relied on the human reference genome, a consensus genetic sequence, as a standard against which to compare other genetic data. Used in countless studies, the reference genome has made it possible to identify genes implicated in specific diseases and trace the evolution of human traits, among other things.

But it has always been a flawed tool. One of its biggest problems is that about 70 percent of its data came from a single man of predominantly African-European background whose DNA.