Toggle light / dark theme

Boy with ‘death sentence’ disease living a normal life after breakthrough gene therapy

A four-year-old boy with a life-threatening immune disease is now living a normal life thanks to a pioneering gene therapy trial.

Eisa Hussain, who suffers from a severe form of leukocyte adhesion deficiency 1 (LAD-1), can now play football and attend school – milestones his family once thought impossible.

LAD-1 cripples the immune system, leaving children vulnerable to infections. Without treatment, the most severe cases are often fatal before the age of two.

New vaccine to treat 15 types of cancer now available on NHS

A new jab which allows cancer patients to be treated with just one injection is set to be rolled out by the NHS for 15 different types of the disease.

Patients will be able to receive the immunotherapy in a vaccine, called nivolumab, in a treatment that will take just 15 minutes rather than spending an hour on an IV drip.

Around 1,200 patients a month will receive it for 15 different types of cancer, including skin, bladder and oesophageal cancer as England becomes the first country in Europe to offer it.

Discovery that microglia can be effectively replaced could transform cell therapy for brain diseases

An international research team led by Professor Kiavash Movahedi from the Brussels Center for Immunology at the Vrije Universiteit Brussel has published unexpected results in the journal Immunity. Their study sheds new light on the possibility of effectively replacing defective microglia—the brain’s immune cells—marking a potential breakthrough in the treatment of neurodegenerative diseases such as Alzheimer’s and Parkinson’s.

Microglia are essential for healthy brain function. Defective are increasingly linked to the development of neurodegenerative disorders.

“Microglia are unique,” says Prof. Movahedi. “They originate early in and maintain themselves throughout life without being replaced by new cells from the blood. That makes them special, but also vulnerable.”

Adaptive Whole-Brain Dynamics Predictive Method: Relevancy to Mental Disorders

The Hopf whole-brain model, based on structural connectivity, overcomes limitations of traditional structural or functional connectivity-focused methods by incorporating heterogeneity parameters, quantifying dynamic brain characteristics in healthy and diseased states. Traditional parameter fitting techniques lack precision, restricting broader use. To address this, we validated parameter fitting methods using simulated networks and synthetic models, introducing improvements such as individual-specific initialization and optimized gradient descent, which reduced individual data loss. We also developed an approximate loss function and gradient adjustment mechanism, enhancing parameter fitting accuracy and stability.

‘Explainable’ AI cracks secret language of sticky proteins

An AI tool has made a step forward in translating the language proteins use to dictate whether they form sticky clumps similar to those linked to Alzheimer’s disease and around fifty other types of human disease. In a departure from typical “black-box” AI models, the new tool, CANYA, was designed to be able to explain its decisions, revealing the specific chemical patterns that drive or prevent harmful protein folding.

The discovery, published in the journal Science Advances, was possible thanks to the largest-ever dataset on protein aggregation created to date. The study gives new insights about the molecular mechanisms underpinning sticky proteins, which are linked to diseases affecting half a billion people worldwide.

Protein clumping, or amyloid aggregation, is a health hazard that disrupts normal cell function. When certain patches in proteins stick to each other, proteins grow into dense fibrous masses that have pathological consequences.

Rapid lithium extraction eliminates use of acid and high heat, scientists report

Lightweight lithium metal is a heavy-hitting critical mineral, serving as the key ingredient in the rechargeable batteries that power phones, laptops, electric vehicles and more. As ubiquitous as lithium is in modern technology, extracting the metal is complex and expensive. A new method, developed by researchers at Penn State and recently granted patent rights, enables high-efficiency lithium extraction—in minutes, not hours—using low temperatures and simple water-based leaching.

“Lithium powers the technologies that define our modern lives—from smartphones to electric vehicles—and has applications in grid energy storage, ceramics, glass, lubricants, and even medical and nuclear technologies,” said Mohammad Rezaee, the Centennial Career Development Professor in Mining Engineering at Penn State, who led the team that published their approach in Chemical Engineering Journal.

“But its extraction must also be environmentally responsible. Our research shows that we can extract lithium, and other , more efficiently while drastically reducing energy use, greenhouse gas emissions and waste that’s difficult to manage or dispose of.”

Can One Gram of Omega-3 Really Slow Aging? Here’s What Science Says

A new study involving over 700 older adults suggests that taking one gram of omega-3 daily may help slow biological aging, with effects visible in molecular markers known as epigenetic clocks.

When combined with vitamin D and regular exercise, the anti-aging benefits became even more pronounced, lowering the risks of frailty and cancer as well.

Omega-3 linked to slower aging in humans.

/* */