Toggle light / dark theme

Building a useful quantum computer in practice is incredibly challenging. Significant improvements are needed in the scale, fidelity, speed, reliability, and programmability of quantum computers to fully realize their benefits. Powerful tools are needed to help with the many complex physics and engineering challenges that stand in the way of useful quantum computing.

AI is fundamentally transforming the landscape of technology, reshaping industries, and altering how we interact with the digital world. The ability to take data and generate intelligence paves the way for groundbreaking solutions to some of the most challenging problems facing society today. From personalized medicine to autonomous vehicles, AI is at the forefront of a technological revolution that promises to redefine the future, including many challenging problems standing in the way of useful quantum computing.

Quantum computers will integrate with conventional supercomputers and accelerate key parts of challenging problems relevant to government, academia, and industry. This relationship is described in An Introduction to Quantum Accelerated Supercomputing. The advantages of integrating quantum computers with supercomputers are reciprocal, and this tight integration will also enable AI to help solve the most important challenges standing in the way of useful quantum computing.

UCLA Health researchers have identified a process that memories while reducing metabolic costs, even during sleep. This efficient memory is found in a brain region essential for learning and memory, which is also where Alzheimer’s disease originates.

The discovery is published in the journal Nature Communications.

Does this sound familiar: You go to the kitchen to fetch something, but when you get there, you forget what you wanted. This is your working memory failing. Working memory is defined as remembering some information for a short period while you go about doing other things. We use working memory virtually all the time. Alzheimer’s and dementia patients have working memory deficits and it also shows up in mild cognitive impairment (MCI). Hence, considerable effort has been devoted to understanding the mechanisms by which the vast networks of neurons in the brain create working memory.

The interaction of solids with high-intensity ultra-short laser pulses has enabled major technological breakthroughs over the past half-century. On the one hand, laser ablation of solids offers micromachining and miniaturization of elements in medical or telecommunication devices. On the other hand, accelerated ion beams from solids using intense lasers may pave the way for new opportunities for cancer treatment with laser-based proton therapy, fusion energy research, and analysis of cultural heritage.

Remember all those low rate scifi horror movies with big snakes, let’s see if the bookie will take bet on when we have a first big one (on the run from the facility)


Scientists used CRISPR editing to make the world’s first genetically modified snakes, giving new insight into how the reptiles develop their patterned scales.

Following the landmark approval of the first CRISPR-based cell therapy in December 2023, the CRISPR community is looking ahead to the next wave of commercial successes, fueled by continued innovation in the development of new gene editing and delivery tools and technologies. Equally exciting advances are occurring in livestock editing, xenotransplantation, and many other specialties.

In The State of CRISPR and Gene Editing virtual summit, GEN proudly gathers a tantalizing line-up of luminaries from academia and industry to discuss the latest research developments, innovations, and advanced technologies that are expanding the CRISPR toolbox, delivering new therapies to patients and safeguarding our food supply.

Cells in the human body chat with each other all the time. One major way they communicate is by releasing tiny spheres called exosomes. These carry fats, proteins, and genetic material that help regulate everything from pregnancy and immune responses to heart health and kidney function.

Now, a new Columbia University study in Nature Nanotechnology demonstrated that these “nanobubbles” can deliver potent immunotherapy directly to tough-to-treat lung cancer tumors via inhalation.

“Exosomes work like text messages between cells, sending and receiving information,” said lead researcher Ke Cheng, PhD, professor of biomedical engineering at Columbia. “The significance of this study is that exosomes can bring mRNA-based treatment to lung cancer cells locally, unlike systemic chemotherapy that can have side effects throughout the body. And inhalation is totally noninvasive. You don’t need a nurse to use an IV needle to pierce your skin.”

Scientists have recently discovered thousands of active RNA molecules that can control the human body.

By Philip Ball

Thomas Gingeras did not intend to upend basic ideas about how the human body works. In 2012 the geneticist, now at Cold Spring Harbor Laboratory in New York State, was one of a few hundred colleagues who were simply trying to put together a compendium of human DNA functions. Their ­project was called ENCODE, for the Encyclopedia of DNA Elements. About a decade earlier almost all of the three billion DNA building blocks that make up the human genome had been identified. Gingeras and the other ENCODE scientists were trying to figure out what all that DNA did.

In a scientific breakthrough, Mount Sinai researchers have revealed the biological mechanisms by which a family of proteins known as histone deacetylases (HDACs) activate immune system cells linked to inflammatory bowel disease (IBD) and other inflammatory diseases.

This discovery, reported in Proceedings of the National Academy of Sciences (PNAS), could potentially lead to the development of selective HDAC inhibitors designed to treat types of IBD such as ulcerative colitis and Crohn’s disease.

“Our understanding of the specific function of class II HDACs in different cell types has been limited, impeding development of therapies targeting this promising drug target family,” says senior author Ming-Ming Zhou, PhD, Dr. Harold and Golden Lamport Professor in Physiology and Biophysics and Chair of the Department of Pharmacological Sciences at the Icahn School of Medicine at Mount Sinai. “Through our proof-of-concept study, we’re unraveling the mechanisms of class II HDACs, providing essential knowledge to explore their therapeutic potential for safer and more effective disease treatments.”

Dr. Petr Cígler and his collaborators are working on refining molecular systems for transporting ribonucleic acid (RNA) molecules into cells. The question of how to effectively deliver RNA to a designated place in the body in order to silence a malfunctioning gene is one of the greatest challenges of the rapidly developing field of gene medicine.