Toggle light / dark theme

“Delete-To-Recruit” — Scientists Discover Simpler Approach to Gene Therapy

Repositioning genes awakens fetal hemoglobin to treat disease. CRISPR editing may change future gene therapy.

Researchers have discovered a promising new approach to gene therapy by reactivating genes that are normally inactive. They achieved this by moving the genes closer to regulatory elements on the DNA known as enhancers. To do so, they used CRISPR-Cas9 technology to cut out the piece of DNA separating the gene from its enhancer. This method could open up new ways to treat genetic diseases. The team demonstrated its potential in treating sickle cell disease and beta-thalassemia, two inherited blood disorders.

In these cases, a malfunctioning gene might be bypassed by reactivating an alternative gene that is usually turned off. This technique, called “delete-to-recruit,” works by altering the distance between genetic elements without introducing new genes or foreign material. The study was conducted by researchers from the Hubrecht Institute (De Laat group), Erasmus MC, and Sanquin, and published in the journal Blood.

AI tool identifies five distinct cancer cell groups within individual tumors

A multinational team of researchers, co-led by the Garvan Institute of Medical Research, has developed and tested a new AI tool to better characterize the diversity of individual cells within tumors, opening doors for more targeted therapies for patients.

Findings on the development and use of the AI tool, called AAnet, have been published in Cancer Discovery.

Tumors aren’t made up of just one cell type—they’re a mix of different cells that grow and respond to treatment in different ways. This diversity, or heterogeneity, makes cancer harder to treat and can in turn lead to worse outcomes, especially in .

Human Cyborgs Are No Longer Science Fiction! (Insane Breakthroughs)

Are human cyborgs the future? You won’t believe how close we are to merging humans with machines! This video uncovers groundbreaking advancements in cyborg technology, from bionic limbs and brain-computer interfaces to biological robots like anthrobots and exoskeletons. Discover how these innovations are reshaping healthcare, military, and even space exploration.

Learn about real-world examples, like Neil Harbisson, the colorblind cyborg artist, and the latest developments in brain-on-a-chip technology, combining human cells with artificial intelligence. Explore how cyborg soldiers could revolutionize the battlefield and how genetic engineering might complement robotic enhancements.

The future of human augmentation is here. Could we be on the verge of transforming humanity itself? Dive in to find out how science fiction is quickly becoming reality.

How do human cyborgs work? What are the latest AI breakthroughs in cyborg technology? How are cyborgs being used today? Could humans evolve into hybrid beings? This video answers all your questions. Don’t miss it!

#ai.
#cyborg.
#ainews.

====================================

Quantum breakthrough: ‘Magic states’ now easier, faster, and way less noisy

Quantum computing just got a significant boost thanks to researchers at the University of Osaka, who developed a much more efficient way to create “magic states”—a key component for fault-tolerant quantum computers. By pioneering a low-level, or “level-zero,” distillation method, they dramatically reduced the number of qubits and computational resources needed, overcoming one of the biggest obstacles: quantum noise. This innovation could accelerate the arrival of powerful quantum machines capable of revolutionizing industries from finance to biotech.

Two proteins that could lead to less toxic cancer treatments identified

Cells depend on the precise reading of DNA sequences to function correctly. This process, known as gene expression, determines which genetic instructions are activated. When this fails, the wrong parts of the genome can be activated, leading to cancers and neurodevelopmental disorders.

Scientists at the University of Geneva (UNIGE) have identified two proteins that play a key role in regulating this essential mechanism, paving the way for promising new treatments that could be more effective and less toxic than those currently available. Their findings are published in Nature Communications.

Human DNA contains over 20,000 genes and would stretch nearly two meters if fully uncoiled. To fit this enormous amount of information into a tiny space within a cell—just 10 to 100 micrometers in diameter—it must be tightly compacted. This is the job of , a complex of proteins that packages and condenses DNA within the .

Engineering biology applications for environmental solutions: potential and challenges

Engineering biology applies synthetic biology to address global environmental challenges like bioremediation, biosequestration, pollutant monitoring, and resource recovery. This perspective outlines innovations in engineering biology, its integration with other technologies (e.g., nanotechnology, IoT, AI), and commercial ventures leveraging these advancements. We also discuss commercialisation and scaling challenges, biosafety and biosecurity considerations including biocontainment strategies, social and political dimensions, and governance issues that must be addressed for successful real-world implementation. Finally, we highlight future perspectives and propose strategies to overcome existing hurdles, aiming to accelerate the adoption of engineering biology for environmental solutions.


The scale of global environmental challenges requires a multi-pronged approach, which utilises all the technologies at our disposal. Here, authors provide their perspective on the potential of engineering biology for environmental biotechnology, summarizing their thoughts on the key challenges and future possibilities for the field.

/* */