Toggle light / dark theme

Yale Physicists Unveil Hidden “Modes” in the Human Ear, Redefining How We Hear

Yale physicists have uncovered a sophisticated and previously unknown set of “modes” within the human ear, which impose crucial constraints on how the ear amplifies faint sounds, withstands loud noises, and distinguishes an astonishing range of sound frequencies.

By applying existing mathematical models to a generic mock-up of the cochlea—a spiral-shaped organ in the inner ear—the researchers revealed an additional layer of cochlear complexity. Their findings provide new insights into the remarkable capacity and precision of human hearing.

“We set out to understand how the ear can tune itself to detect faint sounds without becoming unstable and responding even in the absence of external sounds,” said Benjamin Machta, an assistant professor of physics in Yale’s Faculty of Arts and Science and co-senior author of a new study in the journal PRX Life. “But in getting to the bottom of this we stumbled onto a new set of low frequency mechanical modes that the cochlea likely supports.”

A Third Type of Magnetism? Altermagnetism Named Top Physics Breakthrough of 2024

Science and research continuously deliver groundbreaking discoveries, expanding the boundaries of what we know. Each year, the renowned journal Science highlights ten of these achievements in its list of top scientific breakthroughs. For 2024, the journal named the drug lenacapavir — hailed for its potential to reduce HIV/AIDS infections to zero — as the Breakthrough of the Year. In the realm of physics, another major milestone was recognized: the discovery of altermagnetism by researchers at Johannes Gutenberg University Mainz (JGU).

“This is a truly unique tribute to our work, and we are proud and honored to receive this acknowledgment for our research,” said Professor Jairo Sinova of the JGU Institute of Physics. He and his team discovered and demonstrated the phenomenon of altermagnetism.

Until now, physics recognized only two types of magnetism: ferromagnetism and antiferromagnetism. Ferromagnetism, known since ancient Greece, is the force that makes refrigerator magnets stick, where all magnetic moments align in the same direction. Antiferromagnetism, on the other hand, involves magnetic moments aligning in a regular pattern but pointing in opposite directions, canceling each other out externally.

Breakthrough in Stroke Recovery: Researchers Uncover How the Brain Can Repair Itself

The brain tries to repair damage after a stroke by utilizing its own repair cells, which function like skilled craftsmen. However, their efforts are often obstructed by inflammation, according to new research from the University of Southern Denmark and the University.

A new study conducted by researchers from the Department of Molecular Medicine at SDU highlights one of the most severe consequences of stroke: damage to the brain’s “cables”—the nerve fibers—which results in permanent impairments. Based on unique tissue samples from Denmark’s Brain Bank at SDU, the study could pave the way for new treatments to help the brain repair itself.

Testing Thousands of Compounds Simultaneously to Uncover New Drugs and Tailored Treatments

Scientists have unveiled a groundbreaking method to test how thousands of active substances influence cellular metabolism simultaneously.

By using high-throughput metabolomics and mass spectrometry, they identified unexpected effects of existing medications, paving the way for repurposing drugs and accelerating drug discovery. This approach could one day align patient-specific metabolic data with tailored treatments.

Understanding active substances and cell metabolism.

Pain: Is It All in the Brain or the Heart?

Dr. Armour, in 1991, discovered that the heart has its “little brain” or “intrinsic cardiac nervous system.” This “heart brain” is composed of approximately 40,000 neurons that are alike neurons in the brain, meaning that the heart has its own nervous system. In addition, the heart communicates with the brain in many methods: neurologically, biochemically, biophysically, and energetically. The vagus nerve, which is 80% afferent, carries information from the heart and other internal organs to the brain. Signals from the “heart brain” redirect to the medulla, hypothalamus, thalamus, and amygdala and the cerebral cortex. Thus, the heart sends more signals to the brain than vice versa. Research has demonstrated that pain perception is modulated by neural pathways and methods targeting the heart such as vagus nerve stimulation and heart-rhythm coherence feedback techniques. The heart is not just a pump. It has its neural network or “little brain.” The methods targeting the heart modulate pain regions in the brain. These methods seem to modulate the key changes that occur in the brain regions and are involved in the cognitive and emotional factors of pain. Thus, the heart is probably a key moderator of pain.

BRAIN JOB: Perception. Is YOUR Mind DECEIVING You?!

Can you trust your senses? Do animals have morals? Is your mind deceiving you?

Find out in BRAIN JOB: Perception, where we explore mind-bending phenomena like change blindness, the Trolley Problem, time travel, and more.

Thanks to museum of illusions chicago.

For more, check out.
clareruddy.com.
IG ➤ https://www.instagram.com/clare.ruddy/
TikTok ➤ https://www.tiktok.com/@clare.ruddy?lang=en.

#psychology #experiment #science #braingames #riddles #funfacts #neuoroscience #neurology #socialexperiment #sociology #timetravel #doctor #documentary #illusion #opticalillusion #interestingfacts #lifehacks #vsauce #billnye #MindBlowingFacts #CognitiveScience #LearningMadeFun #BrainPower #MindTricks #BrainFacts #MentalHealth #HumanMind #FunLearning #BrainHack #Edutainment #MemoryTricks #perception #memory #conformity #attraction #millk #LogicPuzzles #BrainTeasers #makesyouthink

Mediterranean Diet Linked to Improved Memory via Gut Bacteria Changes

A new Tulane University study suggests the Mediterranean diet’s brain-boosting benefits may work by changing the balance of bacteria in the gut.

In a study published in Gut Microbes Reports, researchers at Tulane University School of Medicine found that subjects following a Mediterranean diet developed distinctly different gut bacteria patterns compared to those eating a typical Western diet. These bacterial changes correlated with better memory and cognitive performance.

“We’ve known that what we eat affects brain function, but this study explores how that could be happening,” said lead author Rebecca Solch-Ottaiano, Ph.D., neurology research instructor at Tulane’s Clinical Neuroscience Research Center. “Our findings suggest that dietary choices can influence cognitive performance by reshaping the gut microbiome.”

Genome-wide atlas of cell morphology reveals gene functions

Visualizing cells after editing specific genes can help scientists learn new details about the function of those genes. But using microscopy to do this at scale can be challenging, particularly when studying thousands of genes at a time.

Now, researchers at the Broad Institute of MIT and Harvard, along with collaborators at Calico Life Sciences, have developed an approach that brings the power of microscopy imaging to genome-scale CRISPR screens in a scalable way.

PERISCOPE—which stands for perturbation effect readout in situ via single-cell optical phenotyping—combines two technologies developed by Broad scientists: Cell Painting, which can capture images and key measures of subcellular compartments at scale, and Optical Pooled Screening, which “barcodes” cells and uses CRISPR to systematically turn off individual genes to study their function in those cells.

Physicist believes he’s found clues we’re living in a simulation after studying virus

Link :


Through his research, the physician believes there are clues hinting at our reality being a simulation, an has even suggested that mutations are not random — which would debunk the theory of evolution.

The abstract of Vopson’s study read: The simulation hypothesis is a philosophical theory, in which the entire universe and our objective reality are just simulated constructs.

Despite the lack of evidence, this idea is gaining traction in scientific circles as well as in the entertainment industry.