Toggle light / dark theme

Researchers have developed a novel method for generating structured terahertz light beams using programmable spintronic emitters. This breakthrough offers a significant leap forward in terahertz technology, enabling the generation and manipulation of light with both spin and orbital angular momentum at these frequencies for the first time.

Terahertz radiation lies between microwaves and on the electromagnetic spectrum. It holds great promise for various applications, including security scanners, medical imaging, and ultrafast communication. However, generating and controlling terahertz light effectively has proven challenging.

This new research, published in eLight and led by Prof. Zhensheng Tao, Prof. Yizheng Wu from Fudan University and Prof. Yan Zhang from Capital Normal University, overcomes these limitations by employing programmable spintronic emitters based on exchange-biased magnetic multilayers. These devices consist of thin layers of magnetic and non-magnetic materials that convert laser-induced spin-polarized currents into broadband terahertz radiation.

Researchers from the Smart and Wireless Applications and Technologies Group (SWAT-UGR) have conducted two scientific studies aimed at answering a common question: understanding how electromagnetic waves propagate in the medium.

The increase in network speed opens the door to new possibilities, such as robotic surgery or virtual reality services.

A team of UGR researchers has examined the propagation of electromagnetic waves with the goal of enhancing the deployment of 5G and 6G networks. Additionally, the study results contribute to the development of Industry 4.0, which seeks to automate processes in factories using wireless technologies.

Researchers have developed a pH-responsive nanorobot system that changes confirmation in the tumor microenvironment to selectively kill cancer cells in mice.

Researchers at the Karolinska Institutet (Stockholm, Sweden) have recently developed a nanorobot system capable of killing cancer cells in mice. This system works by activating at lower pH, such as within the tumor microenvironment. It is hoped that this could serve as a proof-of-concept for similar stimulus-responsive nanorobotic approaches and introduce a new range of effective cancer therapeutics.

Certain membrane proteins capable of inducing apoptosis, a type of cell death, appear on the surface of both healthy and cancer cells. These proteins, often called death receptors, join and activate when in close proximity to each other. This closeness is induced by external factors binding to the cell surface.

Consciousness is comprised of arousal (i.e., wakefulness) and awareness. Substantial progress has been made in mapping the cortical networks that modulate awareness in the human brain, but knowledge about the subcortical networks that sustain arousal is lacking. We integrated data from ex vivo diffusion MRI, immunohistochemistry, and in vivo 7 Tesla functional MRI to map the connectivity of a subcortical arousal network that we postulate sustains wakefulness in the resting, conscious human brain, analogous to the cortical default mode network (DMN) that is believed to sustain self-awareness. We identified nodes of the proposed default ascending arousal network (dAAN) in the brainstem, hypothalamus, thalamus, and basal forebrain by correlating ex vivo diffusion MRI with immunohistochemistry in three human brain specimens from neurologically normal individuals scanned at 600–750 µm resolution. We performed deterministic and probabilistic tractography analyses of the diffusion MRI data to map dAAN intra-network connections and dAAN-DMN internetwork connections. Using a newly developed network-based autopsy of the human brain that integrates ex vivo MRI and histopathology, we identified projection, association, and commissural pathways linking dAAN nodes with one another and with cortical DMN nodes, providing a structural architecture for the integration of arousal and awareness in human consciousness. We release the ex vivo diffusion MRI data, corresponding immunohistochemistry data, network-based autopsy methods, and a new brainstem dAAN atlas to support efforts to map the connectivity of human consciousness.

One sentence summary We performed ex vivo diffusion MRI, immunohistochemistry, and in vivo 7 Tesla functional MRI to map brainstem connections that sustain wakefulness in human consciousness.

BF has a financial interest in CorticoMetrics, a company whose medical pursuits focus on brain imaging and measurement technologies. BF’s interests were reviewed and are managed by Massachusetts General Hospital and Mass General Brigham HealthCare in accordance with their conflict-of-interest policies.

Learn more about the Cognitive Science Student Association and the California Cognitive Science Conference at https://cssa.berkeley.edu.

Amy Arnsten — Yale University.

Abstract.
The recently evolved prefrontal cortex (PFC) subserves many of our highest-order cognitive functions, generating and sustaining the mental representations that underlie working memory, abstract reasoning, and top-down control of thought, action, and emotion. Due to the pioneering research of Patricia Goldman-Rakic, we have learned much about the neural basis underlying the ability of the dorsolateral prefrontal cortex (dlPFC) to generate mental representations, where microcircuits in deep layer III have extensive recurrent excitatory connections to maintain neuronal firing in the absence of sensory stimulation, while GABAergic interneurons provide lateral inhibition to refine the contents of working memory. However, these dlPFC circuits are also tremendously dependent on arousal state, with a narrow inverted U response to levels of acetylcholine, dopamine and norepinephrine. Even quite mild uncontrollable stress increases the release of dopamine and norepinephrine in the PFC, which rapidly impairs PFC functioning by 1) stimulating D1 and alpha-1-receptors, respectively, 2) these, in turn, activate feedforward calcium-cAMP signaling within spines, which then 3) open nearby potassium channels to disconnect PFC networks and take the PFC “off-line”. With chronic stress exposure, there is actual atrophy of PFC dendrites and spines. Understanding the neural events that weaken vs. strengthen PFC connectivity and function has led to the development of treatments for patients with stress-related PFC dysfunction, e.g. guanfacine and prazosin. This knowledge is also helping to illuminate the etiology of cognitive disorders, as genetic insults in schizophrenia often increase the activity of these stress signaling pathways, and the molecules that regulate the stress signaling pathways are lost with advancing age, leading to tau pathology as seen in Alzheimer’s disease.

An international team of researchers of the Cluster of Excellence “Balance of the Microverse” at the University of Jena has investigated the mechanism that makes some types of bacteria reflect light without using pigments. The researchers were interested in the genes responsible and discovered important ecological connections. Their findings appear in the Proceedings of the National Academy of Sciences.

The iridescent colors known from peacock feathers or butterfly wings are created by tiny structures that reflect light in a special way. Some form similar glittering structures.

In collaboration with the Max Planck Institute of Colloids and Interfaces, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Utrecht University, University of Cambridge, and the Netherlands Institute for Sea Research, the scientists sequenced the DNA of 87 structurally colored bacteria and 30 colorless strains and identified genes that are responsible for these fascinating colonies. These findings could lead to the development of environmentally-friendly dyes and materials, a key interest of the collaborating biotechnology company Hoekmine BV.

Researchers from Tel Aviv University (TAU) have created a new type of glass with unique and even contradictory properties, such as being a strong adhesive (sticky) and incredibly transparent at the same time. The glass, which forms spontaneously when comes in contact with water at room temperature, could bring about a revolution in an array of different and diverse industries such as optics and electro-optics, satellite communication, remote sensing and biomedicine.

The glass was discovered by a team of researchers from Israel and the world, led by PhD student Gal Finkelstein-Zuta and Prof. Ehud Gazit from the Shmunis School of Biomedicine and Cancer Research at the Faculty of Life Sciences and the Department of Materials Science and Engineering at the Faculty of Engineering at TAU. The results of the research were recently published in the prestigious scientific journal Nature.

T-cell transfer therapy is a type of immunotherapy that makes your own immune cells better able to attack cancer. There are two main types of T-cell transfer therapy: tumor-infiltrating lymphocytes (or TIL) therapy and CAR T-cell therapy. Both involve collecting your own immune cells, growing large numbers of these cells in the lab, and then giving the cells back to you through a needle in your vein. T-cell transfer therapy is also called adoptive cell therapy, adoptive immunotherapy, and immune cell therapy.

The process of growing your T cells in the lab can take 2 to 8 weeks. During this time, you may have treatment with chemotherapy and, maybe, radiation therapy to get rid of other immune cells. Reducing your immune cells helps the transferred T cells to be more effective. After these treatments, the T cells that were grown in the lab will be given back to you via a needle in your vein.