Toggle light / dark theme

Software Development Job Postings on Indeed in the United States

Frequency: Daily, 7-Day.

Indeed calculates the index change in seasonally-adjusted job postings since February 1, 2020, the pre-pandemic baseline. Indeed seasonally adjusts each series based on historical patterns in 2017, 2018, and 2019. Each series, including the national trend, occupational sectors, and sub-national geographies, is seasonally adjusted separately. Indeed switched to this new methodology in December 2022 and now reports all historical data using this new methodology. Historical numbers have been revised and may differ significantly from originally reported values. The new methodology applies a detrended seasonal adjustment factor to the index change in job postings. For more information, see Frequently Asked Questions regarding Indeed Data.

Copyrighted: Pre-approval required. Contact Indeed to request permission to use the data at their contact information provided here.

A Low RDW Is Associated With A Longer Lifespan (Clip)

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Common Fungal Compound May Be the Key to Fighting Deadly Flu Infections

Preclinical trial reveals how beta-glucan, a compound found in all fungi, can ‘reprogram’ immune cells to combat lung inflammation.

A recent study suggests that a common fungal component may help protect against flu-related lung damage.

Led by Professor Maziar Divangahi from McGill’s Faculty of Medicine and Health Sciences and the Research Institute of the McGill University Health Centre, the research team found that beta-glucan, when given to mice before influenza exposure, reduced lung damage, improved lung function, and lowered the risk of severe illness and death.

Fat transport deficiency explains rare childhood metabolic crises

Researchers studying a protein linked to a rare, severe disease have made a discovery that sheds light on how cells meet their energy needs during a severe metabolic crisis. The findings could lead to new treatments for the disease and open new avenues of research for other conditions involving impaired fat metabolism.

When scientists at the Centre for Genomic Regulation (CRG) in Barcelona first identified a handful of protein-coding genes called TANGO in 2006, they had no idea that one of them, TANGO2, would eventually be linked to a life-threatening disorder in children. In 2016, the researchers found that mutations in TANGO2 cause a now officially recognized as TANGO2 Deficiency Disorder (TDD).

There are about 110 known patients with TDD worldwide, though there are thought to be an estimated six to nine thousand undiagnosed patients in total.

Osteoarthritis: From Pathophysiology to Novel Therapy

Dear Colleagues.

In the context of an ageing world population, certain pathologies that are exacerbated in this process of ageing, such as osteoarthritis (OA), will become more prevalent in the coming years. Moreover, OA is one of the main causes of chronic pain and physical disability in the elderly. It is therefore of great relevance to gain a deep understanding on the pathophysiology of this disease, and also to identify potential prognostic and diagnostic tools along with novel promising therapeutic targets for OA.

Contamination detection tool merges synthetic biology and nanotech for ultrasensitive water testing

A platform developed nearly 20 years ago previously used to detect protein interactions with DNA and conduct accurate COVID-19 testing has been repurposed to create a highly sensitive water contamination detection tool.

The technology merges two exciting fields— and nanotechnology—to create a new platform for chemical monitoring. When tuned to detect different contaminants, the technology could detect the metals lead and cadmium at concentrations down to two and one parts per billion, respectively, in a matter of minutes.

The paper was published this week in the journal ACS Nano and represents research from multiple disciplines within Northwestern’s McCormick School of Engineering.

Next-generation organic nanozymes offer safe, cost-effective solution for agricultural and food industries

Nanozymes are synthetic materials that have enzyme-like catalytic properties, and they are broadly used for biomedical purposes, such as disease diagnostics. However, inorganic nanozymes are generally toxic, expensive, and complicated to produce, making them unsuitable for the agricultural and food industries.

A University of Illinois Urbana-Champaign research team has developed organic-material-based nanozymes that are non-toxic, environmentally friendly, and cost-effective. In two new studies, they introduce next-generation organic nanozymes and explore a point-of-use platform for molecule detection in .

“The first generation of organic-compound-based (OC) nanozymes had some minor drawbacks, so our research group worked to make improvements. The previous OC nanozymes required the use of particle stabilizing polymers having repeatable functional groups, which assured stability of the nanozyme’s nanoscale framework, but didn’t achieve a sufficiently small particle size,” said lead author Dong Hoon Lee, who completed his Ph.D. from the Department of Agricultural and Biological Engineering (ABE), part of the College of Agricultural, Consumer and Environmental Sciences and The Grainger College of Engineering at the U. of I.

Gene therapy developed for maple syrup urine disease shows promise

A study led by UMass Chan Medical School researchers has demonstrated that a gene therapy to correct a mutation that causes maple syrup urine disease (MSUD) prevented newborn death, normalized growth, restored coordinated expression of the affected genes and stabilized biomarkers in a calf as well as in mice.

“Simply put, we believe the demonstrated in both animal species, especially in the cow, very well showcases the therapeutic potential for MSUD, in part because the diseased cow, without treatment, has a very similar metabolic profile as the patients,” said Dan Wang, Ph.D., assistant professor of genetic & cellular medicine.

Dr. Wang is co-principal investigator with Heather Gray-Edwards, DVM, Ph.D., assistant professor of genetic & cellular medicine; Guangping Gao, Ph.D., the Penelope Booth Rockwell Chair in Biomedical Research, director of the Horae Gene Therapy Center, director of the Li Weibo Institute for Rare Diseases Research and chair and professor of genetic & cellular medicine; and Kevin Strauss, MD, adjunct professor of pediatrics and head of therapeutic development at the Clinic for Special Children in Gordonville, Pennsylvania.

/* */