Toggle light / dark theme

Small Form Factor Technology Solves Complexities of Thought-Controlled Leg Prosthetics

Rehabilitation Institute of Chicago has developed the first neural-controlled bionic leg, using no nerve redirection surgery or implanted sensors. It’s a powerful advancement in prosthetics, including motorized knee and ankle, and control enabled by the patient’s own neural signals. Powered by a tiny but powerful Computer-on-Module platform, this thought-controlled prosthetic represents a significant breakthrough in medical embedded design, improving patients’ lives and mobility with a prosthetic that more closely than ever acts like a fully-functioning natural limb.

The technology of prosthetic limbs has come a long way over time, yet options are still limited for leg amputees. While simple peg legs have evolved to more sophisticated and realistic artificial limbs, the patient was forced to undergo nerve surgery or endure invasive implants. And even though the technology to produce through-controlled mechanized arms has existed for some time, the complexities of leg motion have kept it from being successfully applied in leg prosthetics. Without the ability to move and control the knee and ankle, the prosthetic leg remained a passive solution for patients struggling to replicate natural leg motion.

Read more

My new article for Vice Motherboard. It’s about one of the biggest ideas I believe in–the necessity to spend more money directly on science goals instead of bomb making and defense:


It just so happens that there is another way—a method that would satisfy liberals and conservatives alike. Instead of always spending more on our military, we could transition our nation and its economy into a scientific-industrial complex.

There’s compelling reason to do this beyond what meets the eye. Transhumanist technology is starting to radically change human life. Many experts expect to be able to stop aging and conquer death for human beings in the next 25 years. Others, like myself, see humans merging with machines and replacing our every organ with bionic ones.

Such a new transhuman society will require many trillions of dollars to satisfy humans ever-growing desire for physical perfection (machine or biological) in the transhumanist age. We could keep our economy humming along for decades because of it.

Speculations around whether biotech stocks are in a bubble remain undecided for the second year in a row. But one thing stands as indisputable—the field made massive progress during 2015, and faster than anticipated.

For those following the industry in recent years, this shouldn’t come as a surprise.

In fact, according to Adam Feuerstei at The Street, some twenty-eight biotech and drugs stocks grew their market caps to $1 billion or more in 2014, and major headlines like, “Human Genome Sequencing Now Under $1,000 Per Person,” were strewn across the web last year.

Read more

https://lifeboat.com/blog.images/dna-nanobots-will-target-ca...tient.jpg">

BY: DANIEL KORN

The very mention of “nanobots” can bring up a certain future paranoia in people—undetectable robots under my skin? Thanks, but no thanks. Professor Ido Bachelet of Israel’s Bar-Ilan University confirms that while tiny robots being injected into a human body to fight disease might sound like science fiction, it is in fact very real.

Cancer treatment as we know it is problematic because it targets a large area. Chemo and radiation therapies are like setting off a bomb—they destroy cancerous cells, but in the process also damage the healthy ones surrounding it. This is why these therapies are sometimes as harmful as the cancer itself. Thus, the dilemma with curing cancer is not in finding treatments that can wipe out the cancerous cells, but ones that can do so without creating a bevy of additional medical issues. As Bachelet himself notes in a TEDMED talk: “searching for a safer cancer drug is basically like searching for a gun that kills only bad people.”

Read more

At one time or another, we’ve all been encouraged to “maximize our potential.” In a recent interview, Academic and Entrepreneur Juan Enriquez said that mankind is making progress toward expanding beyond its potential. And the changes, he believes, could be profound.

To illustrate the process, Enriquez theorized what might happen if we were to bring Charles Darwin back to life and drop him in the middle of Trafalgar Square. As Darwin takes out his notebook and starts observing, Enriquez suggested he would likely see what might appear to be a different species. Since Darwin’s time, humans have grown taller, and with 1.5 billion obese people, larger. Darwin might also notice some other features too that many of us take for granted — there are more senior citizens, more people with all their teeth, a lot fewer wrinkles, and even some 70-year-olds running in marathons.

“There’s a whole series of morphologies that are just different about our bodies, but we don’t notice it. We don’t notice we’ve doubled the lifespan of humans in the last century,” Enriquez said. “We don’t notice how many more informations (sic) come into a brain in a single day versus what used to come in in a lifetime. So, across almost every part of humanity, there have been huge changes.”

Part of the difference that Darwin would see, Enriquez noted, is that natural selection no longer applies as strongly to life and death as it once did. Further, random gene mutations that led to some advantages kept getting passed down to generations and became part of the species. The largest difference, however, is our ongoing move toward intelligent design, he said.

“We’re getting to the stage where we want to tinker with humans. We want to insert this gene so this person doesn’t get a deadly disease. We want to insert this gene so that maybe the person performs better on an 8,000 meter peak climb, or in sports, or in beauty, or in different characteristics,” Enriquez said. “Those are questions we never used to have to face before because there was one way of having sex and now there’s at least 17.”

According to Enriquez, the concept of evolving ourselves is an important one because we are the first and only species on earth that has deliberately taken control over the pattern of evolution of what lives and dies (Science Magazine seems to agree). The technologies we’re developing now towards this goal provide us with an instrument for the a potential longer survival of the species than might otherwise be possible.

Those notions, however, raise a number of moral and ethical questions. “What is humanity…where do we want to take it?” Enriquez poses. While he noted that it’s easy to project that tinkering with humanity will lead to a dystopic future, he remains cautiously optimistic about our potential.

“I think we’ve become a much more domesticated species. We’re far less likely to murder each other than we were 50 years ago, 100 years ago or 200 years ago. We have learned how to live together in absolutely massive cities,” Enriquez said. “I think we have become far more tolerant of other religions (and) other races. There are places where this hasn’t happened but, on the whole, life has gotten a whole lot better in the last two or three hundred years and as you’re looking at that, I think we will have the tolerance for different choices made with these very instruments, and I think that’s a good thing.”

As he looks at the future of evolving humanity, Enriquez sees reasons for a great deal of optimism in the realm of single gene modification, especially in the area of eradicating disease and inherited conditions. The consequences, however, are still an unknown.

“In the UK, there was a question, ‘Do we insert gene code into a fertilized egg to cure a deadly disease?’ That is a real question, because that would keep these babies from dying early from these horrendous diseases,” Enriquez said. “The consequences of that are, for the first time, probably in the next year, you’ll have the first child born to three genetic parents.”

The path toward evolving human intelligence in the near future isn’t as cut and dry, Enriquez said. Once we establish the implications and morality between governments, religious organizations, and the scientific community, there are still plenty of hurdles to clear.

“There have been massive studies in China and we haven’t yet identified genes correlated to intelligence, even though we believe intelligence has significant inherited capacity,” Enriquez said. “I think you have to separate reality from fiction. The ability to insert a gene or two, and really modify the intelligence of human beings, I think, is highly unlikely in the next decade or two decades.”

A Chinese company building a massive animal cloning facility doesn’t want to limit itself to just replicating cattle and pets but hopes to move into the human cloning business in the future. The company, Boyalife Group, possesses the technology to do so, its CEO, Xiaochun Xo, told AFP, but to date has been “self-restrained” because it fears public backlash.


A Chinese company is claiming it has the technology to clone humans but is holding off because it says the public isn’t ready. That’s likely true, experts say, and it’s not likely to change because there isn’t a powerful enough medical reason that could swing public opinion.

Read more

Engineer Robert Grass says that though we believe information is here forever, it’s actually fragile. Hard drives and physical sources of information, like books, decay over time. In a video for the BBC, Grass describes his quest to find a method of preserving information that could be stable for millions of years. The secret is DNA.

In 2012, research showed that you could translate a megabyte (MB) of information into DNA and then read it back again. DNA has a language of its own, and is written in sequences of nucleotides (A, C, T, and G). Think of it as similar to binary, which breaks information down into ones and zeros.

And DNA has the advantage of being able to put an enormous amount of information in a tiny space. Theoretically, one gram of DNA could hold 455 exabytes of information. That’s “enough for all the data held by Google, Facebook and every other major tech company, with room to spare”, according to New Scientist.

Read more