Toggle light / dark theme

Scientists unravel mystery of the jellyfish’s “superpower” ability to regenerate body parts

Scientists have unraveled the biological mechanisms behind what they describe as the extraordinary “superpower” ability of jellyfish to regenerate body parts.

Jellyfish are primitive animals which evolved in the oceans around 600 million years ago. Part of the reason for their evolutionary success is that some species are able to grow back tissue that has been lost—a trait that is rare in the animal kingdom.

To learn more about this poorly understood ability, a team of researchers from Tohoku University in Japan investigated the biology of a jellyfish species known as Cladonema pacificum—which has tentacles that spread out like tree branches—for a study published in the journal PeerJ.

MitoMouse – Curing Mitochondrial Dysfunction in Mammals

Today, we have launched the MitoMouse project on our fundraising platform Lifespan.io. This project aims to reverse the damage that aging does to the mitochondrial DNA and to restore energy production in our cells with the goal of preventing age-related ill health.

The power stations of the cell

The mitochondria are the power stations of every single cell in our bodies, and they are responsible for converting the nutrients we absorb into energy. The mitochondria are so efficient at doing this that they are responsible for around 90% of the energy that our cells need to function and survive.

The Gut Microbiome Affects Muscle Strength in Older Adults

A role for the gut microbiome on the health and functioning of many tissues, including the brain, liver, kidney, and adiposity, has been widely reported in the literature. Interestingly, 2019 might be the year that the role of the gut microbiome on skeletal muscle (i.e. the gut-muscle axis) comes into greater focus.

The influence of the gut microbiome on muscle strength

In April, Nay et al. reported that endurance exercise capacity was reduced in mice that do not contain a microbiome (germ-free mice, GFM) when compared with conventionally raised, microbiome-containing mice. This finding suggests that there are microbes in the gut that positively influence aerobic exercise performance.

Checkerspot raises $13M Series A to produce biotech-enabled performance materials

Checkerspot, a biotech startup using microalgae to produce performance materials, announced today that it has closed its Series A financing for $13 million. The round was led by Builders VC, and included Breakout Ventures, Viking Global Investors, KdT Ventures, Plug and Play Ventures, Sahsen Ventures, and Godfrey Capital, among others.

Checkerspot combines bioengineering, chemistry, and materials science to go from microalgae to next-generation performance materials.

“This is a pretty significant milestone for us,” said Checkerspot CEO Charles Dimmler. He said the funding would support the company’s continued infrastructure development, as well as ongoing commercial activities with Beyond Surface Technologies and DIC that focus on novel triglycerides and polyols. He also said it would help complete the development of a direct-to-consumer product later this year.

DNA Nanomachines Are Opening Medicine to the World of Physics

When I imagine the inner workings of a robot, I think hard, cold mechanics running on physics: shafts, wheels, gears. Human bodies, in contrast, are more of a contained molecular soup operating on the principles of biochemistry.

Yet similar to robots, our cells are also attuned to mechanical forces—just at a much smaller scale. Tiny pushes and pulls, for example, can urge stem cells to continue dividing, or nudge them into maturity to replace broken tissues. Chemistry isn’t king when it comes to governing our bodies; physical forces are similarly powerful. The problem is how to tap into them.

In a new perspectives article in Science, Dr. Khalid Salaita and graduate student Aaron Blanchard from Emory University in Atlanta point to DNA as the solution. The team painted a futuristic picture of DNA mechanotechnology, in which we use DNA machines to control our biology. Rather than a toxic chemotherapy drip, for example, a cancer patient may one day be injected with DNA nanodevices that help their immune cells better grab onto—and snuff out—cancerous ones.

Biologists track the invasion of herbicide-resistant weeds into southwestern Ontario

A team including evolutionary biologists from the University of Toronto (U of T) have identified the ways in which herbicide-resistant strains of an invasive weed named common waterhemp have emerged in fields of soy and corn in southwestern Ontario.

They found that the resistance—which was first detected in Ontario in 2010—has spread thanks to two mechanisms: first, pollen and seeds of resistant plants are physically dispersed by wind, water and other means; second, resistance has appeared through the spontaneous emergence of resistance mutations that then spread.

The researchers found evidence of both mechanisms by comparing the genomes of herbicide-resistant plants from Midwestern U.S. farms with the genomes of plants from Southern Ontario.

Twist Bioscience Enhances DNA Storage Capabilities Through Agreement With Imagene SA

SAN FRANCISCO—( )—Twist Bioscience Corporation (NASDAQ: TWST), a company enabling customers to succeed through its offering of high-quality synthetic DNA using its silicon platform, today announced that it has entered into an agreement with Imagene SA, where Imagene will provide Twist with an encapsulation service to store DNA through its DNAshell® technology to store digital data encoded in DNA for thousands of years.

“We are happy to be partnering with Twist and providing them with our disruptive DNAshell® technology to safely store DNA with digital data encoded.” Tweet this

“This agreement with Imagene provides the next step in the continuum on DNA digital data storage and fits within our strategy to cover all aspects of the process efficiently to enable the development of DNA as a digital storage medium,” commented Emily Leproust, Ph.D., CEO of Twist Bioscience. “We believe the DNAshell ® technology allows us to encapsulate the DNA-stored digital data securely, protecting it for eternity from any elements including radiation, and eliminating the need for continued copying of digital data due to degradation experienced in other forms of storage today.”