Toggle light / dark theme

Hidden Brain Lesions Uncovered by AI, Transforming Epilepsy Treatment

An AI-powered tool called MELD Graph is revolutionizing epilepsy care by detecting subtle brain abnormalities that radiologists often miss.

By analyzing global MRI data, the tool improves diagnosis speed, increases access to surgical treatment, and cuts healthcare costs. Though not yet in clinical use, it is already helping doctors identify operable lesions, offering hope to epilepsy patients worldwide.

AI Breakthrough in Epilepsy Detection.

Scientists invent new drug candidates to treat antibiotic-resistant bacteria

There’s an arms race in medicine—scientists design drugs to treat lethal bacterial infections, but bacteria can evolve defenses to those drugs, sending the researchers back to square one. In an article published in the Journal of the American Chemical Society, a University of California, Irvine-led team describes the development of a drug candidate that can stop bacteria before they have a chance to cause harm.

“The issue with antibiotics is this crisis of antibiotic resistance,” said Sophia Padilla, a Ph.D. candidate in chemistry and lead author of the new study. “When it comes to antibiotics, can evolve defenses against them—they’re becoming stronger and always getting better at protecting themselves.”

About 35,000 people in the U.S. die each year from from pathogens like Staphylococcus, while about 2.8 million people suffer from bacteria-related illnesses.

Engineers show industrial potential of diamond quantum sensors for EV battery monitoring

Researchers at the Technical University of Munich (TUM) have invented an entirely new field of microscopy called nuclear spin microscopy. The team can visualize magnetic signals of nuclear magnetic resonance with a microscope. Quantum sensors convert the signals into light, enabling extremely high-resolution optical imaging.

Magnetic resonance imaging (MRI) scanners are known for their ability to look deep into the human body and create images of organs and tissues. The new method, published in the journal Nature Communications, extends this technique to the realm of microscopic detail.

“The used make it possible to convert signals into optical signals. These signals are captured by a camera and displayed as images,” explains Dominik Bucher, Professor of Quantum Sensing and researcher at the Cluster of Excellence Munich Center for Quantum Science and Technology (MCQST).

Single-cell RNA analysis reveals key immune mechanisms in lungs of pigs infected with reproductive and respiratory virus

Porcine reproductive and respiratory syndrome virus (PRRSV) infection in pigs is economically devastating for the global swine industry. The viral infection leads to reproductive disorder in sows and respiratory problems in infected newborn and growing pigs.

Unfortunately, high genetic variability of the virus and differing disease-causing strength or virulence hinders vaccine development and complicates disease management. Not much is known about the factors contributing to viral disease severity or the anti-viral immune responses.

Dr. Jun-Mo Kim, Associate Professor at the Department of Animal Science and Technology, Chung-Ang University, Korea, has focused his research efforts on filling this gap in understanding.

Antioxidant Activity of Coumarins and Their Metal Complexes

Ubiquitously present in plant life, coumarins, as a class of phenolic compounds, have multiple applications—in everyday life, in organic synthesis, in medicine and many others. Coumarins are well known for their broad spectrum of physiological effects. The specific structure of the coumarin scaffold involves a conjugated system with excellent charge and electron transport properties. The antioxidant activity of natural coumarins has been a subject of intense study for at least two decades. Significant research into the antioxidant behavior of natural/semi-synthetic coumarins and their complexes has been carried out and published in scientific literature.

Is TNF-alpha Inhibition A Future Therapy For Longevity?

Join us on Patreon! https://www.patreon.com/MichaelLustgartenPhD

Discount Links/Affiliates:
Blood testing (where I get the majority of my labs): https://www.ultalabtests.com/partners/michaellustgarten.

At-Home Metabolomics: https://www.iollo.com?ref=michael-lustgarten.
Use Code: CONQUERAGING At Checkout.

Clearly Filtered Water Filter: https://get.aspr.app/SHoPY

Epigenetic, Telomere Testing: https://trudiagnostic.com/?irclickid=U-s3Ii2r7xyIU-LSYLyQdQ6…M0&irgwc=1
Use Code: CONQUERAGING

NAD+ Quantification: https://www.jinfiniti.com/intracellular-nad-test/

Nvidia Invests Further Into Healthcare And Releases The Largest Biology Foundation Model With The Arc Institute

Furthermore, healthcare and life sciences are both booming sectors with regards to artificial intelligence applications. Many other companies are also working at the intersection of technology and biology, given the numerous challenges that are present in the fields of drug discovery and protein folding. For example, Deepmind and Isomorphic Labs have made immense progress with AlphaFold, another leading foundation model ecosystem to better understand protein folding. Meta created something similar with its ESM Metagenomic Atlas. Given the increasing rates of catastrophic disease and the rapidly evolving nature of pathogens, scientists in these sectors hope to use the best of the advancements in AI to help solve some of biology’s toughest challenges.

Indeed, the immense progress that has been made thus far has paved the way for monumental scientific inventions and developments to emerge in the years ahead. Undoubtedly, this work is just getting started.

Novel ‘Living’ biomaterial aims to advance regenerative medicine

A biomaterial that can mimic certain behaviors within biological tissues could advance regenerative medicine, disease modeling, soft robotics and more, according to researche(rs at Penn State.

Materials created up to this point to mimic tissues and extracellular matrices (ECMs) — the body’s biological scaffolding of proteins and molecules that surrounds and supports tissues and cells — have all had limitations that hamper their practical applications, according to the team. To overcome some of those limitations, the researchers developed a bio-based, “living” material that encompasses self-healing properties and mimics the biological response of ECMs to mechanical stress.

They published their results in Materials Horizons, where the research was also featured on the cover of the journal.