Toggle light / dark theme

Gramicidins work as antibiotics against gram-positive bacteria like Bacillus subtilis and Staphylococcus aureus, but not well against gram-negative ones like E. coli. [ 3 ]

Gramicidins are used in medicinal lozenges for sore throat and in topical medicines to treat infected wounds.s are often mixed with other antibiotics like tyrocidine and antiseptics. [ 4 ] s are also used in eye drops for bacterial eye infections. In drops, they are often mixed with other antibiotics like polymyxin B or neomycin. Multiple antibiotics increase efficiency against various strains of bacteria. [ 5 ] Such eye-drops are also used to treat eye infections of animals, like horses. [ 6 ]

[ edit ].

Image credit: GrumpyBeere – Pixabay

Researchers used a refined method of ancestry analysis utilizing ancient DNA. This study represents a significant advancement in our understanding of historical population movements.

Researchers can trace human migration through DNA changes, but it’s challenging when historical groups are genetically similar.

Meanwhile, scientists dug into how psychedelics and MDMA fight off depression and post-traumatic stress disorders. The year was a relative setback for the psychedelic renaissance, with the FDA rejecting MDMA therapy. But the field is still gaining recognition for its therapeutic potential.

Then there’s lenacapavir, a shot that protects people from HIV. Named “breakthrough of the year” by Science, the shot completely protected African teenage girls and women against HIV infection. Another trial supported the results, showing the drug protected people who have sex with men at nearly 100 percent efficacy. The success stems from a new understanding of the protein “capsule” guarding the virus’ genetic material. Many other viruses have a similar makeup—meaning the strategy could help researchers design new drugs to fight them off too.

So, what’s poised to take the leap from breakthrough to clinical approval in 2025? Here’s what to expect in the year ahead.

UC Riverside scientists have developed a nanopore-based tool that could help diagnose illnesses much faster and with greater precision than current tests allow, by capturing signals from individual molecules.

Since the molecules scientists want to detect—generally certain DNA or protein molecules—are roughly one-billionth of a meter wide, the they produce are very small and require specialized detection instruments.

“Right now, you need millions of molecules to detect diseases. We’re showing that it’s possible to get useful data from just a ,” said Kevin Freedman, assistant professor of bioengineering at UCR and lead author of a paper about the tool appearing in Nature Nanotechnology. “This level of sensitivity could make a real difference in disease diagnostics.”

Mitochondria are vital to energy production in cells and so play a key role in fueling cancer growth. However, how mitochondrial DNA (mtDNA) contributes to cancer has been unclear.

Scientists at St. Jude Children’s Research Hospital studied varying levels of mutated mtDNA to see their effect on . They found that while cancer growth was blocked in cells in which all mitochondria contained mutated mtDNA, it was notably increased in cells with moderate amounts of mutated mtDNA. By amplifying an enzyme vital to energy production, the researchers were also able to restart cancer growth in cells with fully mutated mtDNA.

Collectively, these findings highlight an unexplored connection between mitochondrial DNA and cancer cells’ metabolic function. The findings were published Jan. 1 in Science Advances.

To overcome that limitation, MIT researchers have developed a computational technique that allows large language models to predict antibody structures more accurately. Their work could enable researchers to sift through millions of possible antibodies to identify those that could be used to treat SARS-CoV-2 and other infectious diseases.

The findings are published in the journal Proceedings of the National Academy of Sciences.

Chinese scientists have found a common hypertension drug could prove potent in treating a rare but highly invasive brain tumour.

Although craniopharyngioma is a benign tumour, it can cause complications due to its growth along the critical nerve structures of the brain close to the hypothalamus and the pituitary gland.

Given its location, the tumour can cause hormone dysfunction and metabolic disorders, like obesity, diabetes and hypothyroidism.

Research reveals distinct mechanisms underlying neonatal and post-pubertal social behaviors, providing valuable insights for developing targeted early interventions.

Researchers from the University of Texas Health Science Center at San Antonio and Hirosaki University have unveiled significant findings on the development of social behaviors in fragile X syndrome, the most common genetic cause of autism spectrum disorder. The study, published in Genomic Psychiatry, highlights the effects of a specific prenatal treatment on social behaviors in mice.

The researchers found that administering bumetanide—a drug that regulates chloride levels in neurons—to pregnant mice restored normal social communication in newborn pups with the fragile X mutation. However, they also discovered an unexpected outcome: the same treatment reduced social interaction after puberty in both fragile X and typical mice. These findings shed light on the complex and developmental-stage-specific effects of interventions for fragile X syndrome.

“The ultimate goal is to extend healthspan—meaning the number of years aging adults live healthy lives and enjoy overall well-being by compressing the frailty and disability that comes with aging into a shorter duration of time near the end of life,” says Andrew Brack, PhD, the PROSPR Program Manager.

The new venture will be building on some of the work that the National Institute of Aging (NIH) has been working on and will be working in collaboration with various organizations in the biotechnology industry as well as some unspecified regulators to accelerate the development, testing, and availability of new therapeutic that targets human healthspan.

It is hoped that the new initiative, along with positively impacting the healthspan of Americans, will also help to enhance the economy across the nation.