Toggle light / dark theme

Neural microtissues derived from pluripotent stem cells (iPSCs) can replace dopaminergic neurons, the nerve cells that are lost in Parkinson’s disease, and restore motor function when grown into tiny capsules and transplanted into the brains of model rats, a study led by TreeFrog Therapeutics found.

“TreeFrog Therapeutics has overcome the most complex challenges of developing a successful treatment for Parkinson’s disease using our C-Stem platform technology and producing a therapy containing mature dopaminergic neurons with a unique 3D format that promotes cell survival post-graft with proven pre-clinical results,” Jens Schroeder, MD, PhD, TreeFrog’s chief medical officer, said in a company press release.

The study, “Bioreactor-produced iPSCs-derived dopaminergic neuron-containing neural microtissues innervate and normalize rotational bias in a dose-dependent manner in a Parkinson rat model,” was published in Neurotherapeutics.

Genetic testing company settles with plaintiffs over breach that was revealed when hacker published link to database labeled ‘ashkenazi DNA Data of Celebrities’

The breach, which occurred last October, affected more than 6.9 million customers and included users’ personal details such as their location, name and birthdate, as well as some information about their family trees. That data was shared on BreachForums, an online forum used by cybercriminals.

According to court documents, the data breach was revealed October 6 after a hacker going by the pseudonym Golem, a reference to the Jewish mythical defender made of clay, published a link to a database labeled ashkenazi DNA Data of Celebrities. According to the lawsuit, the hacker referred to the list as the most valuable data you’ll ever see, though most of the names were not famous.

Expanding Healthy Human Lifespan for All — Dr. Mehmood Khan, MD — CEO, Hevolution Foundation.


Dr. Mehmood Khan, MD is the Chief Executive Officer of Hevolution Foundation (https://www.hevolution.com/), a first of its kind non-profit organization that funds research through grants and provides investments in biotech to incentivize healthspan science across disciplines and borders for the benefit of all. Established by a Saudi Royal Decree, with its headquarters in Riyadh, with additional international hubs to support the expansion and execute the global mission, it’s vision is to expand healthy human lifespan for the benefit of all humanity.

Hevolution Foundation aims to be positioned as a global leader, catalyst, partner, and convener, to increase the number of scientists entering the field, to increase the investable opportunities in the field of aging, and to help shape the regulatory and government environment.

Dr. Khan also currently serves as the Executive Chairman of Life Biosciences Inc. where he joined the company in April 2019 as the Chief Executive Officer and Board Member. Life Biosciences was founded to advance scientific research and develop innovative new therapies to improve and extend healthy lives for everyone.

Dr. Khan previously served as Vice Chairman and Chief Scientific Officer of Global Research and Development at PepsiCo, a Fortune 50 company employing upwards of 250,000 employees across 22 brands. At PepsiCo, Dr. Khan played a pivotal role in the company’s global R\&D efforts to create breakthrough innovations in food, beverages, and nutrition, including the incorporation of healthier and more nutritious offerings across its portfolio. Dr. Khan also oversaw PepsiCo’s global sustainability initiatives based on the belief that success in business is inextricably linked to the sustainability of the world we share.

https://youtube.com/channel/UC8Gtb6QcDOTbwcsDJo1bcGg

This little boy is really smart. I’m like in my 50’s this kid is barely 10, but much smarter than I am. Share and show him support. We need to have incentives for kids to thrive educationally. Props to the kids parents, they really raised an inspirational talent.


Sean is an aspiring brain and heart surgeon and he has created a name for it. He wants to be a “Neurocardio surgeon”. A word he created from Neurologist and Cardiologist. He is a STEM Educator Education Promotor/Advocate. He loves to learn and teach and wants to make the learning of science fun for all. Sean wants to create the awareness that science is not complex and can be seen in everything we do and in our everyday life. Sean is an advocate for positivity and shares motivation everywhere he goes. Sean is managed by his mom.

A nice study by Hoffmann et al. where nanobodies were inserted into various locations on adeno-associated virus (AAV) capsids. The authors also ablated hepatocyte tropism by mutating the heparan binding domain of the AAVs. These strategies greatly enhanced cell type specific targeting (in vitro).


Abstract. Adeno-associated virus (AAV) has been remarkably successful in the clinic, but its broad tropism is a practical limitation of precision gene therapy. A promising path to engineer AAV tropism is the addition of binding domains to the AAV capsid that recognize cell surface markers present on a targeted cell type. We have recently identified two previously unexplored capsid regions near the 2/5-fold wall and 5-fold pore of the AAV capsid that are amenable to insertion of larger protein domains, including nanobodies. Here, we demonstrate that these hotspots facilitate AAV tropism switching through simple nanobody replacement without extensive optimization in both VP1 and VP2. Our data suggest that engineering VP2 is the preferred path for maintaining both virus production yield and infectivity. We demonstrate highly specific targeting of human cancer cells expressing fibroblast activating protein (FAP). Furthermore, we found that the combination of FAP nanobody insertion plus ablation of the heparin binding domain can reduce off-target infection to a minimum, while maintaining a strong infection of FAP receptor-positive cells. Taken together, our study shows that nanobody swapping at multiple capsid locations is a viable strategy for nanobody-directed cell-specific AAV targeting.

The human brain’s remarkably prolonged development is unique among mammals and is thought to contribute to our advanced learning abilities. Disruptions in this process may explain certain neurodevelopmental diseases.

Now, a team of researchers led by Prof. Pierre Vanderhaeghen (VIB-KU Leuven), together with scientists of Columbia University and Ecole Normale Supérieure has discovered a link between two genes, present only in human DNA, and a key gene called SYNGAP1, which is mutated in intellectual disability and .

Their study, published in Neuron, provides a surprisingly direct link between human brain evolution and neurodevelopmental disorders.