Toggle light / dark theme

NMN Restores Brain Function

A group of researchers has demonstrated that treatment with NMN, a precursor of NAD+, restores neurovascular coupling (NVC) in aged mice [1]. Since NVC deficiency seems to be a major factor in the age-related decline of cognitive and motor functions, this discovery presents exciting new possibilities for longevity research.

Neurovascular coupling

While the human brain is the evolutionary advantage that brought us to where we are today, operating this machine requires considerable resources. Our cerebral blood flow (CBF) accounts for 15% of cardiac output and 20% of resting total oxygen consumption, even though the brain itself comprises just 2% of body mass. CBF has to be constantly redirected to the regions of the brain that are currently active, and NVC is the mechanism in charge of this complex operation. Importantly, the CBF/cardiac output ratio decreases with age [2].

Making sense of the viral multiverse

In November of 2019—likely, even earlier—a tiny entity measuring just a few hundred billionths of a meter in diameter began to tear apart human society on a global scale. Within a few months, the relentless voyager known as SARS-CoV-2 had made its way to every populated corner of the earth, leaving scientists and health authorities with too many questions and few answers.

Today, researchers are scrambling to understand where and how the novel coronavirus arose, what features account for the puzzling constellation of symptoms it can cause and how the wildfire of transmission may be brought under control. An important part of this quest will involve efforts to properly classify this emergent human pathogen and to understand how it relates to other we may know more about.

In a consensus statement, Arvind Varsani, a molecular virologist with ASU’s Biodesign Center for Fundamental and Applied Microbiomics and a host of international collaborators propose a new classification system, capable of situating coronaviruses like SARS-CoV-2 within the enormous web of viruses across the planet, known as the virosphere.

Molecules identified that reverse cellular aging process

Central to a lot of scientific research into aging are tiny caps on the ends of our chromosomes called telomeres. These protective sequences of DNA grow a little shorter each time a cell divides, but by intervening in this process, researchers hope to one day regulate the process of aging and the ill health effects it can bring. A Harvard team is now offering an exciting pathway forward, discovering a set of small molecules capable of restoring telomere length in mice.

Telomeres can be thought of like the plastic tips on the end of our shoelaces, preventing the fraying of the DNA code of the genome and playing an important part in a healthy aging process. But each time a cell divides, they grow a little shorter. This sequence repeats over and over until the cell can no longer divide and dies.

This process is linked to aging and disease, including a rare genetic disease called dyskeratosis congenita (DC). This is caused by the premature aging of cells and is where the team focused its attention, hoping to offer alternatives to the current treatment that involves high-risk bone marrow transplants and which offers limited benefits.

Scientists Have Figured Out The Best Materials to Use if You’re Making a Mask at Home

Depending on who you ask and where you are, wearing a mask can be an important part of the strategy to stop the spread of SARS-CoV-2.

With the CDC recommending surgical and N95 masks should be kept for medical personnel on the front line, if you do want or need a mask, you should be purchasing or making a cloth one.

But when looking at cloth masks, which materials work best for keeping your germs in and other people’s germs out?

Antiparasitic drug Ivermectin kills coronavirus in 48 hours

Around the world, scientists race to develop a vaccine or treatment against the coronavirus disease (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Now, a team of researchers has found that a drug already available around the world can kill the coronavirus in a lab setting in just 48 hours.

Novel Coronavirus SARS-CoV-2 Colorized scanning electron micrograph of an apoptotic cell (green) heavily infected with SARS-COV-2 virus particles (yellow), isolated from a patient sample. Image captured at the NIAID Integrated Research Facility (IRF) in Fort Detrick, Maryland. Credit: NIAID.

San Francisco Paid the Price for Lifting Spanish Flu Lockdown Early | NowThis

During the 1918 flu, San Francisco lifted its lockdown early — and paid a dire price.
» Subscribe to NowThis: http://go.nowth.is/News_Subscribe
» Sign up for our newsletter KnowThis to get the biggest stories of the day delivered straight to your inbox: https://go.nowth.is/KnowThis

In US news and current events today, the coronavirus pandemic, the COVID-19 outbreak has had people around the world in lockdown. People in the United States and the world at large have had to quarantine and practice social distancing and self-isolation when necessary.

Some states, like Georgia, are beginning to reopen businesses, but history has shown us that lifting a lockdown too early can have dire consequences. Here’s how San Francisco’s early lifting of regulations during the 1918 flu, a strain of H1N1 virus also referred to as the Spanish flu, nearly doubled the death toll of the city.

#Coronavirus #Lockdown #SanFrancisco #Pandemic #Flu #News #NowThis #NowThisNews

Connect with NowThis
» Like us on Facebook: http://go.nowth.is/News_Facebook
» Tweet us on Twitter: http://go.nowth.is/News_Twitter
» Follow us on Instagram: http://go.nowth.is/News_Instagram
» Find us on Snapchat Discover: http://go.nowth.is/News_Snapchat

NowThis is your premier news outlet providing you with all the videos you need to stay up to date on all the latest in trending news. From entertainment to politics, to viral videos and breaking news stories, we’re delivering all you need to know straight to your social feeds. We live where you live.

Akara Robotics Turns TurtleBot Into Autonomous UV Disinfecting Robot

Built in about 24 hours, this robot is undergoing in-hospital testing for coronavirus disinfection.


UV disinfection is one of the few areas where autonomous robots can be immediately and uniquely helpful during the COVID pandemic. Unfortunately, there aren’t enough of these robots to fulfill demand right now, and although companies are working hard to build them, it takes a substantial amount of time to develop the hardware, software, operational knowledge, and integration experience required to make a robotic disinfection system work in a hospital.

Conor McGinn, an assistant professor of mechanical engineering at Trinity College in Dublin and co-leader of the Robotics and Innovation Lab (RAIL), has pulled together a small team of hardware and software engineers who’ve managed to get a UV disinfection robot into hospital testing within a matter of just a few weeks. They made it happen in such a short amount of time by building on previous research, collaborating with hospitals directly, and leveraging a development platform: the TurtleBot 2.

Over the last few years, RAIL has been researching mobile social robots for elder care applications, and during their pilot testing, they came to understand how big of a problem infection can be in environments like nursing homes. This was well before COVID-19, but it was (and still is) one of the leading causes of hospitalization for nursing home residents. Most places just wipe down surfaces with disinfectant sometimes, but these facilities have many surfaces (like fabrics) that aren’t as easy to clean, and with people coming in and out all the time, anyone with a compromised immune system is always at risk.

Microsoft boasts 99 percent accuracy in AI bug detection

Software bugs have been a concern for programmers for nearly 75 years since the day programmer Grace Murray Hopper reported the cause of an error in an early Harvard Mark II computer: a moth stuck between relay contacts. Thus the term “bug” was born.

Bugs range from slight computer hiccups to catastrophes. In the Eighties, at least five patients died after a Therac-25 radiation therapy device malfunctioned due to an error by an inexperienced programmer. In 1962, NASA mission control destroyed the Mariner I space probe as it diverted from its intended path over the Atlantic Ocean; incorrectly transcribed handwritten code was blamed. In 1982, a later alleged to have been implanted into the Soviet trans-Siberian gas pipeline by the CIA triggered one of the largest non– in history.

According to data management firm Coralogix, programmers produce 70 bugs per 1,000 lines of code, with each bug solution demanding 30 times more hours than it took to write the code in the first place. The firm estimates the United States spends $113 billion a year identifying and remediating bugs.

/* */